NYU

Lecture O:
Introduction and Course
Overview

ECE-GY 9483 / CSCI-GA 3033
Special Topics: Efficient Al and Hardware Accelerator Design

Self Introduction

e Assistant Professor, NYU, ECE & CS, lead System & Al
(SAI) lab.
A senior research scientist at Meta, 2022-2024.
Academic trajectory
o University of Toronto
m Bachelor and Master in ECE
m Master in Statistics
o Harvard University
m PhDIinCS
e Research Interest:
o Efficient Al Algorithm
o Al Hardware Accelerator

NYU SAl LAB o AR/VR System

Course Information

e Course website: https://www.saigianzhang.com/COURSE/
e | use Brightspace to post announcements and grades
e | provide an online zoom meeting option for people interested

In auditing the class. However, enrolled students are required
to attend in person unless special condition.

e Discussion groups has been created in the Brightspace

e Course emalil: efficientaiaccelerator@gmail.com

NYU SAI LAB

https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/93825201038?pwd=YScgBkdxIBLmnLpvkyXXxqCXRgy98T.1&jst=2

Course Information

e The course will involve 13 lectures, 3 coding assignments, 1 final project, 1 midterm exam and
in-class quiz.
o In-class quiz (15%)
In-course presentation (5%)
Assignments (30%): total three of them, each counts 10%
Midterm (25%)
Final project (25%)
m Project Proposal (5%) (1 page)
m Final Presentation (10%)
m Final Report (10%)
e Readings:
o Course notes and papers (optional)
o (reference) Goodfellow, lan. "Deep learning." (2016). https://www.deeplearningbook.org/
e Lecture time:
o Friday: 5:00pm-7:30pm
e Office hour:
o Friday: 1:30pm-2:30pm, or by appointment (Zoom)

O O O O

NYU SAI LAB

https://www.deeplearningbook.org/
https://nyu.zoom.us/j/94617243355?pwd=tfvBBL2QnxUDzbdXbmM0CjWjHKekwI.1&jst=2

In-Course Presentation General Policy

e Please use Google Slides to create your presentation slides.

e Sign up here:
https://docs.google.com/spreadsheets/d/1QL7gBQnMIuk-uTniPeHOHG6i4ij40
hVbuOoOACXBCMV4/edit?usp=sharing

e There is limit on the number of slides (10 pages for algorithmic paper, 14
pages for architectural paper), make sure to stay within the presentation
time limit (15 mins for algorithm paper, 25 mins for arch paper).

e Submission Deadline: Please send the link to your Google Slides
presentation by Friday before 2:00 PM each week to Shawn Yin
(xy2053@nyu.edu)

e Please ensure that the Google Slides link is set to 'Anyone with the link can
view' so that it is accessible to us.

NYU SAI LAB

In-Course Presentation Format

e Paper Presentation (3 persons, 15 mins for Algorithm paper, 25 mins for
Arch paper):

@)

@)

Content
m Introduction
m Background
m Methodology
m Evaluation

Your thoughts & Discussion

Evaluation criteria

NYU SAI LAB

Clarity (3): Did the presenter articulate the main goals of their research or analysis?
Structure and Flow (2): Was the presentation logically organized?

Depth of Analysis (3): Did the presenter demonstrate a good understanding of the
paper?

Discussion with audience (2)

The grade may differ based on the individual performance

Course Feedback from Previous Semesters

What is your overall satisfaction with the course?

Very Satisfied 14 87.50% (GG
Somewhat Satisfied 2 1250% D

Neutral 0 0.00%

Somewhat Dissatisfied 0 0.00%

Very Dissatisfied 0 0.00%

Total 16 0% 50% 100%

NYU SAI LAB

Course Feedback from Previous Semesters

Amazingly built course on all fronts, format/ teaching style/ resources etc. Very engaging and pleasurable experience

The course is very practical and cutting—edge. Is a good introduction course for student who want to take part in related research. It
would be better taken in the afternoon or earlier. Cause the content is a lot and need high attention to catch up with the pace. In my
opinion, I'm feeling a little bit tired during the left half of the lecture.

Amazing course. Professor Sai is doing a great job. Course structure, quizzes, midterm, assignments, project-All were super helpful
and great.
Also, very nice, polite, understanding and approachable professor.

Professor is really nice and helpful in explaining any topic. Best professor he is

NYU SAI LAB .

Course Assistant/Grader

Shawn Yin (CA) Yifei Feng (CA) Handong Ji (Grader)

Office hour: Monday
1:00pm-2:00pm 11:00am-12:00pm
(Zoom) (Zoom)

NYU SAI LAB

https://nyu.zoom.us/j/92280980529
https://us04web.zoom.us/j/72875854880?pwd=q6QhqaxoWLbarB4joAe0dlhadDheCE.1

Life is Powered by Deep Learning

e Deep Neural Networks (DNNs) have achieved state-of-the-art performance
across a variety of domains

®)

©)
©)
©)

Image Recognition @

Video Processing g

Natural Language Processing @@
Autonomous Driving @&,

Convolutional . ,
I:> [Neural Network]I:> rose

(CNN)

Image Classification

TOP 1 ACCURACY

Non
CNNs

100%

90%

80%

70%

60%

50%

40%

SIFL4FVs

CNNs

Noisy Student

PNASNetg5——"
Inception ResNet V2 y

PReLU-Net—-#~
SPPN,e;t

AlexNet - 7CNNs #

2012 2014 2016 2018 2020

NYU SAI LAB| ® More desirable modern services are enabled by DNN 10

How Deep Neural Network is Executed?

e Use a Convolutional Neural Network
(CNN) as an example

e This CNN contains four layers
o 3 convolutional layers
o 1 fully connected layer

NYU SAI LAB

‘rose’

A

Fully Connected

T

Convolution

A CNN with
4 layers

Convolution

A

Convolution

’

How Deep Neural Network is Executed?

A

Fully Connected

T

Convolution

T CNN with
4 layers
Convolution
Convolution
’

NYU SAI LAB

How Deep Neural Network is Executed?

A

Fully Connected

T

Convolution

T CNN with
4 layers

Convolution

Convolution

NYU SAI LAB

How Deep Neural Network is Executed?

A

Fully Connected

T

Convolution
T CNN with
4 layers
Convolution
Convolution

NYU SAI LAB

How Deep Neural Network is Executed?

I\

Fully Connected

T

Convolution

T CNN with
4 layers

Convolution

Convolution

NYU SAI LAB

How Deep Neural Network is Executed?

‘rose’

Fully Connected

T

Convolution

T CNN with
4 layers

Convolution

Convolution

NYU SAI LAB

DNN Execution: A Matrix View

Layer View

A

Fully Connected

A

Convolution

A

Convolution

A

Convolution

NYU SAI LAB

Matrix View

Weight
Matrix

Data
Matrix

Weight matrices are
learned during training

17

DNN Execution: A Matrix View

Layer View

A

Fully Connected

A

Convolution

A

Convolution

A

Convolution

NYU SAI LAB

-

Matrix View

Weight matrices are
learned during training

18

DNN Execution: A Matrix View

Layer View Matrix View
*

Fully Connected
A

e Remaining layers follow
this pattern.

Convolution t-------=7"7- > X =
) >

Convolution X =
\

Convolution X @ =

NYU SAI LAB ﬁ .

DNN Execution: A Matrix View

Layer View Matrix View
4 ‘rose’
Fully Connected |--------"""- > X = [
4 ».__-_ e Remaining layers follow
: : this pattern
Convolution X =
'}
Convolution X =
A
Convolution X @ =

NYU SAI LAB ﬁ o

Deployment of DNN: Problems

e The majority of computation workloads
for DNN inference involves a series of
matrix multiplications.

‘rose’

4096, 1000

4096, 4096
25088, 4096
512, 4608
512, 4608

512, 4608

512, 4608

512, 4608
512, 2304

256, 2304
256, 2304
256, 1152
128, 1152
128, 576

64, 576

64, 27

NYU SAI LAB

o

VGG-16 is a CNN with
over 150M weights
across 16 matrices

21

Deployment of DNN: Problems

DNN suffers due to:

o High energy consumption

o High processing latency

o High storage cost

DNN needs to maintain high accuracy

NYU SAI LAB

6 (2018): 64270-64277.

20B multiply/adds
per image

Top-1 accuracy [%]

80 1

75

70

&

55 +

SE-ResNeXt-101(32x4d)
Inception-ResNet-v2
ption-

NASNet-A-Large

Bianco, Simone, et al. "Benchmark analysis of representative deep neural network architectures." IEEE Access

Vs SENet-154
SE-ResNeXt-50(32xdd) it ’ fensiand h}alPatheH(ﬂ
SE-ResNet-101)'% Q?esNeHSZ eXt-101(64x4d)
SE-ResNet:50, |ncapﬁon-v3“.”’2ﬁé:.‘::)(132", FB'-SSNI:t-I115:2
DenseNet-201@) QenseNet-161 ot
® @resnerso @catie-ResNet-101 VGG-19_BN
DualPathNet-68 DenseNet-169 VGG-16_BN
DenseNet-121
@ naset Mvobie
BN-Incaption @ ResNet-34 VGG-13_BN
® MobileNet-v2 VGG-11: BN
VGG-19
ResNet-18 VGG-16
MobileNet-v1
VGG-13
" ShuffleNet VGG-11
.GaogLeNet
1M 5M 10M 50M 75M 100M 150M
SqueezeNet-v1.1
® SqueezeNet-v1.0 The |OWer
.AlexNet
the better
T T T
0 5 10 15 20 25
Operations [G-FLOPs]

The
higher
the
better

22

The Era of Large Models (LMs)

NYU SAI LAB

Vi G TS G GShard G mT5 Open-Source
—_ 2019 — /2020 /\ w1 S g!? o, S £ o
GPT-3 @ e a e e £2 PLUG E.:':," HyperCLOVA
N G FLAN C LaMDA

sLoow () -
‘ MT-NLGgggy / \ mspur Yuan 1.0 ocoph"

BAAI CPM-2

WebGPT@ ™ & / \ \7 GLaM o Chinchilla
0 -
Ernie 3.0 Titanh:' 2022 -~ g:% PanGu-X
InstructGPT \ J uL2 O r—
a e (= Bard
e \9) \ J PalM a Flan-T5 \, ax
mTo £ CodeGen O Tk-Instruct AIZ ‘_‘/‘\ / a Flan-PaL.M @ ERNIE Bot
GLM ,';“.""A ort (0 7-10 Q) LLaMA
BLOOMZ % TS
N —
Galatica 0Q AlexaTM g / \ |.‘
OPT-IML (OX) ChatGPT GPT-4@

23

Cost of Large Models

180 ¢
: @
[
g 144 ¢ o= @1
S (175B) (>1T)
;’ 108 ¢
N
(7))
_ 72 @ @2 m
: G ©® G & ron
= 36 ®1ransformer GPT-1 BERT GPT-2 Megg;‘l’;;"-"" L";LB?

(0.058) (0.11B) (0.34B) (1.5B) :
+
2017 2018 2019 2020 2021

e 1.4e'? FLOPs to execute GPT-2.

NYU SAI LAB "

The Cost of Large Models

NYU SAI LAB

Training GPT-4 required 25,000 A100 GPUs
over several weeks.

Cost: Renting a single high-end GPU on cloud
services like AWS can cost $3—-$5 per hour.
Training GPT-4 is estimated to cost $63-100
million on cloud computing resources.

25

Efficient Al: An Emerging Area

ARCHITECTURE
Model Size FP16 FPS INT4 o i
................. T e
3
8B 16 GB 8 GB 4GB e
SeGLy
70B 140 GB 70 GB 35GB ——
e ; & ' Nx
4058 LLaMA 3.1 810 GB 405 GB | 203GB | ; P :

with KV Cache

Postionsl Ereodegs

Design more aggressive and efficient Al model is
of paramount importance

NYU SAI LAB

Efficient Al: An Emerging Area

hardware unit is growing slowly

DNN
workload DNN workload grows
exponentially

How to reduce the compute while

The amount of compute supported within a /

NYU SAI LAB maintaining a good DNN accuracy?

27

Efficient Al: An Emerging Area

Research Publications on DNN Pruning and Quantization (2015-2023)
850

—e— Publications
---- Trendline
800

o
=}
=)

Number of Publications
B
o

N
o
S

2017

2018

20&9
Year

2020

2021

2022

2023

Efficient Al has become one of the
most popular areas in Al
community.

The recent emergence of large
models has further heightened
the need for efficient Al.

28

Efficien

Infra Hardware TF
Q Sunnyvale, CA + 2 more
Hardware System
Q MenloPark,cA Al
Silicon Hardware
Q sunnyvale, CA + 2 more
Visiting Research:
©Q MenloPark,CA Al
Director, Al Resea

©Q London,UK AlRes

Jc

NYU SAI LAB

M

a
Zonarancy
SERCES

Visiting Researcher - Al Accelerators
Meta

Harrisburg, PA - via Monster

(© 3daysago @l Fulltime

Research Scientist-Al Accelerator Design
IBM
Yorktown Heights, NY - via Karkidi

$ 120K-190K ayear |fi§ Full-time @ Heaithinsurance (7 Dental insurance Paid time off

Machine Learning Engineer - Efficient Machine Learning

Bose Corporation, U.S.A
Anywhere - via Workday
(© 4daysago M Work from home (fi§ Full-time

Machine Learning/Al Engineer
Advanced Micro Devices, Inc
Boxborough, MA « via AMD Careers
i Fulltime

Sr Machine Learning Engineer, Al Software Solutions
Advanced Micro Devices, Inc

Fishkill, NY « via Monster

i Full-time

Artificial Intelligence Engineer

Tata Consultancy Services

Malvern, PA - via Linkedin

@© 21hoursago § 130K-160K a year il Full-time

t Al: An Emerging Area

" ccelerator Design

Karkidi
time @ Health insurance Paid time off (3} Dental insurance

eering/ Al accelerator compiler and Runtime

lanager, Al Compiler

iome (i} Fulltime @ Health insurance

ation Engineer for Intel Al Accelerator

nce Paid time off

ems ML - Frameworks / Compilers / Kernels

reers Jobs

ems ML - Frameworks / Compilers / Kernels

Jiter

gree.

alent practical experience.

<aging).

29

Al Tech Startups/Unicorns

N

nomtek

* ARTIFICIAL INTELLI{

Fast

On-D Em q

Deploy custo
locally for you

without intert |
e

NYU SAI LA

Home Product Octopus v CoralSDK Aboutus v Pri

Register for our hackathon now and win up to $7,000!

(cerebras

ng pgNOVO Products v Technology v Resources v Solutions v Community v About v

Unleash the Fastest Private Enterprise GPT

World record performance with Llama 3.1 405b on the
only generative Al platform with full accuracy.

Meta-Llama-3-8B-Instruct ~

@ Try the latest "Meta-Llama-3.1-405B-Instruct” model X

Samba-1/Turbo

Lightning-fast Inference

Write a Python code to reverse a linked list Plan a weekend trip to Mount Shasta
Draft an email following up with a customer after an introductory Create a 3 days a week workout schedule for intermediate fitness
sales call level

Efficient Al: An Emerging Area

NYU SAI LAB

Challenges

olution
Hardware
efficient '

Efficient Al: Full-stack Workflow

NYU SAI LAB

Full-stack Workflow

S

‘VV

Algorithmic Optimization

Distillation & Low rank

[Graph optimization]

[Kernel-level optimization]

[Distributed system, Multicore]
[Single Core, SoC]

[Circuit-level Optimization]

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

32

Efficient Al: Full-stack Workflow

AAL

NYU SAI LAB

Full-stack Workflow

Algorithmic Optimization

Distillation & Low rank

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

33

Algorithmic Optimization

DepthW|se Separable Convolutlon

Depthwise
Conv
_______ Standard Convolution | © iﬂ _
' Convolution) H 3 =
| : i | 3 i
T o W |
H 3 B Pointwise
3 : Conv
1 W | :
: l T
5 1
NYU SAI LAB S

34

Efficient DNN Algorithm: Pruning

% 0.1 3 160.2] 1 (¢] 3160 1
0.2]1.2]|0.2(-1 0 (1.2 0 |-1
) Prune
DNN weights —

% -8 |-1l0.6|1.4 -8|-1]|0 (1.4

NYU SAI LAB

Efficient DNN Algorithm: Quantization

% 8.5 3 10.2] 1 9 3 (6 1
3.9/|1.2|4.6| -1 Q;Jgn!]]ge 4 1 5 | -1
DNN weights 19.19)

% 8.1|-110.6|1.4 8 |-1| 1| 1

NYU SAI LAB

Knowledge Distillation

NYU SAI LAB

Teacher Model

37

QSVD

Calibration
dataset

Step 1:
Joint SVD over QKV Weight

QSVD

Step 3:
Post-training Quantization

11, MEae
- = &

Q: What is the S
« lcustomer review| g
|]
& & @
Step 2: Learnable rank S Titliae smoo{ﬁng

>
= (Q: What is the
brand of the car e
allocation for SVD

Embeddlng VISU8| elnCOder = I:l)(l:lrl I:> .9 1.2:4.6 =, |54 1: 5 |-1

| Projection | Ealaledid [lalalq]
| T Quantization

w

N

Language model

— Loss -/ P Token Concatenation

e We propose leveraging Singular-Value Decomposition over the joint query (Q), key (K),

and value (V) weight matrices to reduce KV cache size and computational overhead.
NYU SAI LAB

Speculative Decoding with DREAM
[) tot

dpez

*_ ;ngeniit;; :
Text

NYU SAI LAB

('ll:"'L' """""" li-'\ |-1 ----------- ’-‘
1 Sz Sn— ?.1._‘?2.-:::_-‘?._
Target decodlng Decoder Layers g
- O layers . — Crossj A
o - l{— --------------- '-‘I 3 et
3 Sisish - | Sp ! w@i\ﬂn >
= ° BhEh ... gl 2
) o 1 522 i o
= T e SR G AN R g
@ E Decoder Layers | &
= [(X o Akaas:
g g 0 Sq+vlr Sq+vlr+1'
-

*- fdkemééf
Text Image

Image

We introduce DREAM, a novel speculative decoding framework tailored for VLMs.

Efficient Al: Full-stack Workflow

AAL

Efficient Algorithm

[Graph optimization]

DNN Compiler

[Kernel-level optimization]

Full-stack Workflow

DNN Hardware Accelerator

NYU SAI LAB

Graph Level Optimization

CAMEL Training

y

Concatenate| |

F2

F1

X1 X2

Output

Reversible
Block

Zhang, Sai Qian, et al. "Camel: Co-designing ai models and edrams for efficient on-device learning." 2024 IEEE International

@
&
(e]
-
o
pd
Z [o]
£
§ |
— Pretrained
_ DNN Block
=
g
Tew Pretrained
DNN Block
]
[
Input

“\NNQ auogxoeg

’

(a) Computation
during forward pass
y1l y2l sl
4

x1,11 X2,

(b) Dependency graph (c) Pseudo instruction
Compute Y31 = G(X2))
Overwrite X2, with Y31

@ @ @ Compute Y2 = Pool(y3,) + F1(X1,1)
Save y2|

(d) Computation pattern of forward pass

Compute Y1, = X1,1+F2(y2,)
Overwrite X1,1 with Y1,

Layer| Layer 1+1
a A
TG o Trl TRl v TG+1 0 Tr2,l+1 1 TFa,l+1
i Compute | Compute Compute; Compute : Compute iCompute:
[} Y3l [y2,| 1 y1.| 1 y3,|+1 1 y2‘|+1 1 y1,|+1 1
1o t fs iy £y ts tg

Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

41

System Level Optimization

Round 1 Round 2
Step 1 Step 4
-~ ~
Y Compute Y Compute
‘4’ Core Step 3 L ‘4’ Core Step 6 Mem
Step 2 Step 5
'_M____Cf'_(i,(__T___,]/: 2 Round 1 Round 2
[Reshape] [Reshape] [Reshape] Step 1
i)) £ ~
(linear] [linear] [linear) ‘:‘ Compute Mem (" Compute Mem
: ! Step 2 Selic St: 3 Core Step 4
Layernorm P P _—
X

NYU SAI LAB

System Level Optimization

e How to convert a number x to INT representation?

Set the clipping range: (-L, L), bitwidth: b

Compute the scale: s = 2L /(2" — 2)

Clip the input x: z. = Clip(x, L, —L)

Calculate the INT representation: ;,; = round(x./s)
Rescale: Ty = STt

O O O O O

_|FP2l | INT | INT2] | Batch | log | |FP2] | INT |

INT Conv FP Norm INT Conv

\)
Y

Laver | FP2INT is not cheap! But we can
NYU SA[LAB y explore some system-level solution

43

Kernel Fusion

embedding_dim /| token f----- m 3. parallely calculate
c I normalization/activation
= > L o and max abs of each part
R > | et
Q - Norm 1+ Abs | 4. tree-based parallel
Ie] > A A\\\t\ﬁrea r in--bTo_cI: ~ reduction for threads

GPU block

1. assign each token to a GPU block 2. assign a fraction of a

token to each thread

e For example, we can fuse the max searching operation to the batch
normalization operation within LLM.

NYU SAI LAB w

Efficient Al: Full-stack Workflow

AAB

% Efficient Algorithm

o

4

—

=

X .

) DNN Compiler

8

P

% [Distributed system, Multicore]

- | Single Core, SoC] DNN Hardware Accelerator
[Circuit-level Optimization]

‘VV

NYU SAI LAB

Hardware Support for DNN

e GPU is better than CPU in terms of throughput for both Neural Network
training and inference.
o GPU leverages the highly parallelized architecture of its computing
units to handle computational intensive operations.

FP64

e However, GPU: -
o General purpose, although much more specific than CPU.
o Still not fast and power-efficient enough.

o Does not support advanced efficient DNN algorithm.

NYU SAI LAB

FP64

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT
INT INT

e Y TENSOR TENSOR

INT INT CORE CORE

INT INT
INT INT

INT INT

LY LD/ W/ LY LDF LD LDF LDV
ST ST ST ST ST ST ST ST SFU

NVIDIA

NYU SAI LAB

Chip size 814 mm?
On-chip memory ~50MB
Total memory ~96GB HBM
Cores 16,896 FP32 + 528
Tensor
Precision FP16/FP8/INTS
NVIDIA H100 bg/l ndwidth peta%St%i/sec

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974

47

NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM
Cores -
Precision FP16/FP8/FP4/INT8
Memory bandwidth 8 Terabytes/sec

NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5

NYU SAI LAB x-ai-performance-192-gb-hbm3e-memory/

Hardware Support for DNN

e ASIC-based implementations have been recently explored to accelerate the DNN inference.
o Google’s TPU, Apple’s Neural Engine, Cerebras Al chip, ...

e FPGA-based accelerators for DNN inference have been recently developed.

o Has good programmability and flexibility
o Short development cycles
o Can be used as a benchmark before implementing on ASIC

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx) Cerebras CS-3

NYU SAI LAB w

Systolic Array

e Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982

e 2D grid of multiplier-accumulators (MACs) for matrix multiplication
e Used by Google TPU for deep learning (2017), etc

Systolic cell

t

2D Systolic Array

Y [z=wx+y

V=X

NYU SAI LAB

B

f

f

f

f

\

TPU (Google)

50

Bit-serial Low-precision Multiplier

Xi
(]
| Input Buffer
w, Ws W5 w, W3 W2 W, W‘J T :
Xi2 aes Xz
o X1 X1
A B A B A B A B A B A B A B A B
i FA Cof i FA Cof FA Cof i FA Cof FA Cof FA Co FA Cof i FA Cof Addr
s s s s s s s s S

v

Control1

Enable ...
Reset

‘».Data T~
hift Shit
Control__[Memory wes Control Memory
Controller Controller
Tl I Crl I 1

A

Yi ESampIe

suus] 11
R 8 aen Ri 8
Bit-serial Multiplier-Accumulator (MAC) o] °F o] ¥ revery 0
Input to T BT 132 cycles

Shift | |y ReLU

Figure 7: Bit-serial multiplier-accumulator (MAC). S){f}ggc i

NYU SAI LAB

Why We Need Codesign?

NYU SAI LAB

N

Joint Optimization

A

v?

Algorithmic Optimization

Distillation & Low rank

[Graph optimization]

[Kernel-level optimization]

[Distributed system, Multicore]
[Single Core, SoC]

[Circuit-level Optimization]

Why We Need Codesign?

V?Ienshe Sparse Sparse
e' t . .
Input 19 Input Weight Input Weight
‘ g | QO
Unstructured Structured
High accuracy Low accuracy
low hardware efficiency high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.

NYU SAI LAB

53

Column Combining

Weight Matrix Systolic Array

32 64

R NI T EE
Gl X S B R :
f L R ST . .
st ke Column Combining » .
"':'..'_-_'-.:'_.,: g "I_-.'; . wEE . . -
STy [DRER FIRT 8x reduction in size
o R FRE A I
e e W dEel
o4 Fmod il ol N
'.-.'_':'r:'.i.'.l.:'j: !-1"'.': -::E"_.! st '!:i
.:_.. _.-...j-.:_I I:--.:-I:.-!I_. -"E; -E;
[P IRT WFIE IPR | BT

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
NYU SAI LAB implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 54

Architectural Support for Programming Languages and Operating Systems. 2019.

Column Combining

(a) Standard

(b) Systolic Array After

Systolic Array Column Combing 3

G-

7 7 3) Column
[2 Ffo[4]- Combining Y — 6 —Y

i i 1 i ——> in out
o-CrHEE -
| 1 N (T) |£;|_ﬁ"|'_;|"6"f'“-'6_ke—pt_dJe_t-o——— 1 /

i 1 i————T ______ 1. larger magnitude :___ X3

X, X, X, X, X1 Xy X3%y

e Column combining can greatly increase the utilization efficiency of the systolic array

e Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU

NYU SAI LAB

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 55
Architectural Support for Programming Languages and Operating Systems. 2019.

FPGA Accelerator

scumulator
<
P

—

FPGA Energy Efficiency "AC |~

B ResNet-18 [1AC Yo,
[0 ResNet-50

=
o

Host AXI

JTAG to| _

e
o

[MobileNet-v2
I LSTM L L

A
\A

o
o

NYU SAI LAB

o
»

Shift 11
. Control | Memory
Controller

©
[N

Normalized Energy Efficiency

)
o

16 20 24 28 42 48 54 60

oo Shift

Regx8

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

56

Term Quantization

8-bit uniform quantization 4-bit uniform quantization

272625242322 2120

1 00000001
Wi 2H00001100
3 00000101
W,=137 (10001001

272625242322 2120

O000000X
O000YX00
OO0000Y0X
1000Y00%

=

W, =0
W, =0
W, =0
W, =128

e Low-precision quantization leads to significant quantization error.
e Both weights and input activation are highly biased in values.

NYU SAI LAB

Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized

dnns." arXiv preprint arXiv:2007.06389 (2020).

57

Term Quantization

w 22222120 W

2 > O 010 2

5 O 10 % 4
Budget = 2

X 23 222t 20 X

9 > 100 % 8

3 0O 01 % 2

>[21 2]
H Sty iz -
>[2321]

4-bit uniform quantization

2726252%2322212°
00000001
0001100
0000101
10001001
W, =0
W, =
W, =0
W, =128

TQ with a budget =4
272625242322212°

00000001
0001100
0000101
10001001
W, =0
W, =12
W, =0
W, =136

e We can control the term-level computations by setting a group term budget.

e For a group of values, we rank and remove the small terms based on this budget.

NYU SAI LAB

Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

58

Term Quantization: Accelerator Design

[Systolic Array of tMAC)

tMAC | |tMAC | " [tMAC
tMAC | | tMAC | --- [tMAC
tMAC | [tMAC | " | tMAC

e

Incrementer

Combine A‘_ﬂ:'
wires B

” Positive

Positive ~~~
input =7

Negative]

Term
accumulator

[~ output

| ~— Negative

input

We propose the term MAC (tMAC) for the efficient implementation of TQ.
A tMAC processes all term-pair multiplications across a group of weight and data values.
Each term is represented by their corresponding exponent (2-3 bits).

1
LI
Yin Term
accumulator
Sgn[FTFx T T~ T 1+
O|11|1(2]2]3
Weight exponent queue
[e]3[1]1]0[3]2]0~Z Jr Jr Jr
Weight index queue
il 21 1414 |1
10 190 [0
Data exponent queues tMAC
[J
o
[J
o

The term accumulation can be implemented using half adders.

NYU SAI LAB

T
Shift bitwidth

output

Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

59

Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

Refresh frequency decreases with

Importance KV Importance KV layer depth and bit position
scores cache scores cache :
z 0 2EEg o
I Ki | vi [H o) frequent
E:) ka | v2 |} 2 . refresh
ks lV5 I .5 I
X4 € Less
:CL_’. frequent
< refresh
KV bit position

e We propose using embedded DRAM (eDRAM) as the primary storage for LLM serving in edge device,
which offers higher storage density compared to SRAM.

e To reduce eDRAM costs and improve overall system performance, we propose Kelle, a
software-hardware co-design solution optimized for deploying LLMs on eDRAMbased edge systems.

NYU SAI LAB

Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

Lpgiﬁay |[[-KV cache eDRAM \g’eight o
Son Filol SRAM)
s [Bank] 5[Activation =
[Systolic Evictor |4t Controller ||| eDRAM <
|[Eviction ControllerlI-IRefresh Controller| [Refresh Controller]
J:’f‘v% If_/\f\ I T,V\
3‘ x_—_f
OX3 | =1 0] Ox3 | =1 0] Ox3 |10
Ox2 |~ @=] Ox2 | -0 0] OX2 | =0 O =
Ox1 | =1 1=] Ox1 | =1 1~] Ox1|=11-=
w@® 1] OXO | =@ 1] OXO | =@ 1] OxO | ~0 1~
‘—T—I W —— W — ‘—f_‘_ W —
4 bits 128 bits 128 bits 128 bits 128 bits
Attn score Key MSB Value MSB Key LSB Value LSB

NYU SAI LAB

Combined with our fine-grained
memory eviction, recomputation, and
refresh control algorithms, the Kelle
accelerator delivers a 3.9% speedup
and 4.5x energy savings compared to
existing baseline solutions.

61

Lecture Plan (Tentative)

Chapter 1: Basics and Efficient DNN Architectures

e Lecture 1: Review the basics of DNN
e Lecture 2: CNNs, RNNs and Variants
e Lecture 3: Transformer and its Application in AIGC

NYU SAI LAB

62

Lecture Plan (Tentative)

Chapter 2: Efficient DNN Algorithms

Lecture 4: DNN Pruning

Lecture 5: DNN Quantization

Lecture 6: Distillation, Low rank Decomposition and NAS

Lecture 7: Algorithm for Large Model Efficiency

Lecture 8: Efficient DNN Training, Distributed Training, Federated Learning

NYU SAI LAB

63

Lecture Plan (Tentative)

Chapter 3: System and Hardware Design for Al

Lecture 9: Distributed Machine Learning System for Training and Inference
Lecture 10: CNN Dataflow & Hardware Accelerators

Lecture 11: Transformer & LLM Accelerators

Lecture 12: Hardware Accelerator for DNN Training

Lecture 13: New Computation Paradigms / ARVR Computing

NYU SAI LAB

64

NYU

Lecture 1:
Neural Network Basics

ECE-GY 9483 / CSCI-GA 3033
Special Topics: Efficient Al and Hardware Accelerator Design

Basics of Deep Neural Networks

e Multi-layer Perceptrons (MLPs)

o Fully-connected layers

o Activation functions

o Loss function

o Backpropagation

How forward and backward propagation is performed?
How to compute the gradient?

How to update the weight?

How to initialize the weight before training?

NYU SAI LAB

66

Multi-layer Perceptrons

e Usually consists of fully-connected layers with nonlinear activation functions.

e

Inputs - - = A z f . -
@ Wy, A Output

Sum Activation

@ W, Function

e A neural network consists of interconnected nodes, called neurons, organized into layers.
e Each neuron receives input signals (activations), performs a computation on them, and
produces an output signal that may be passed to other neurons in the network.

NYU SAI LAB

Fully-connected layers (Linear layers)

Weights/Synapses Y=XW+b

i

e X (input activations): BxC.
e Y (output activations): BxCou
Input Output e W (weights): CixCou
Neuron.s/F_eatures/ Neuron.s/F.eatures/ e b (bias): 1xCux

Activations Activations . L

e C.: Number of input activations
Co=4. Cu=3 e C.. Number of output activations
’ e B: batch size
[i
Lmi» Linear —>|Nonlinear Linear ~Nonlinear— --- —[Softmax Output

Computational Cost for MLP

NYU SAI LAB

N
X
m

2Xx3

™
x
m

Number of multiply-accumulate operations (MACs):

©)

Xeuw}jos

Bx2x3 = 6B

Storage cost:

@)
@)

6 x 32 = 192 bits (Weights)
(2B + 3B) x 32 bits (Activation)

69

1.0}

0.5}

0.0}

NYU SAI LAB

. 1
Function: o(z) =
unctio (x) T

Domain: (—oo, 00)
Range: [0,1]
Differentiable everywhere
Derivative: &(x)(1-0(x))

70

Tanh

—Sigmoid
~Tanh
0.5 /
s 0
-0.5¢

NYU SAI LAB

e — 1

Function: tanh(z) =
anh(x) % 1

Domain: (—o0, 00)
Range: [-1,1]
Differentiable everywhere
Derivative: 1 — tanh?(z)

4l

RelLU

. RelU f 0
z, ifz>

| R(z) =maz(0, 2 ReLU(z) = {0, otherwise

J e Domain: (—oo, 00)

e Range: [0,00]

4 | . H 1, T > O
e Differentiable everywhere {0, z <0

0
ok - 0 5 10

NYU SAI LAB

Leaky ReLU

f04

RelLU :
JFO=»

.
»

f»=0 y

fy)=ay

x, ifx>0
ar, otherwise

Leaky_ReLU(xz) = {

e Domain: (—o0, 00)
e Range: (—00, 00)

NYU SAI LAB

Softmax

o%i e Domain: [-20 N
Sj = == Fori=1,2,---,N e Range: [0,1N
j=0 € e Itis a multivariate function
I tf,_______________________j _______ E tput
Lu;» Linear —>|Nonllnear — Linear -Nonlinear— --- —[Softmax Outpu

Input
Indino

v Block 1 —>[Block 2]:{ Block 3]—{ Block 4]—*
I
—

16x16 16x16 % 16x16 %X 16x10

i i

1x16
1x10

NYU SAI LAB 3

L.oss Functions

the ground truth output in the training dataset.

— V)2 L =
MSE =~} (¥i - ¥))

Input

-
—>

NYU SAI LAB

1 n 1 m

i=1 =1

L2 loss

)

))

Loss functions quantify the difference between the DNN output and

(yi -log(9i) + (1 — i) - log(1 — 7))

Cross-entropy loss

) (

Block 1 :[Block 2

~———

.| Block 4

J \ J

| Block 3

J

—— Forward propagation -——— Backward propagation

~

‘| Softmax

e

D
Indino
yini iunmg
(0TXT)

75

Softmax

Z.
g) .
Si = = Fori=1,2---,N e Domain: (—o0, 00)
> ._Blezf e Range: [0,1]
J_ o o
o X ——— % O
3 ~ |Softmax | _ &
£ 2 | 8 S-
X ks
d When s has a d S1 — Sf —S1°S52 —S1°S3
gl di T dimensionof3 25 _ —Sy+S1 Sy—S82 —sp-53
T iag(s) —ss™ > > :
z —S3+8;y —S3°S3 S3—§

NYU SAI LAB

76

Backpropagation for Nonlinear Layers

1x16

—— Forward propagation
—— Backward propagation

!
1x16| |1x16
prd
(@)

S
=
D
Q
-5
1x16l

e Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.

NYU SAI LAB .

Backpropagation for Nonlinear Layers

e?® —1
e Tanh: tanh(z) = oz] 1 tanh’(z)
_ [z, ifx>0 dReLU(x) _J1, ifx>0
* RelU: Relliz) = {O, otherwise dz B {0, otherwise

e Leaky RelU: Leaky ReLU(x) = {"f" ifz >0 dLeaky RelU(z) _ { 1, ifz>0

axr, otherwise dx

a, otherwise

1 d

e Sigmoid: o(z) = 11z 0 (@) =—0(z)=0()(1-0(z)

NYU SAI LAB o

Backpropagation for Nonlinear Layers

[
Linear —>|Nonllnear © S
X X
T - = L = —— Forward propagation
- __,| Linear | — Backward propagation
T -7 Co) o
< 16x10
—| Block 4 — S X

e Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.

NYU SAI LAB 79

Fully-connected layers (Linear layers)

1x16 1x10

dL dL dYT dL

dX ~ dY dX dY

_______________________________ 5 dL dL
db ~ dY

—>® Block 4 ? dL - dL
% 16x10 % = =
ke ke dW dY
16x10 16x1 1x10

S e

5 =

: Linear [~

3 S

NYU SAI LAB P 16x10 P

10x16

W' Derivative wrt data

Derivative wrt bias

Derivative wrt weight

80

Fully-connected layers (Linear layers)

Y=XW+Db

Linear

1x16l [1x16

NYU SAI LAB

16x10

X (input activations): BxCin

Y (output activations): BxCout
W (weights): CinxCout
b (biaS): 1% Cout

1x10

1x101

1x16

1x10 10x16

T
daL _ dL d¥ — el W' Derivative wrt data
dX dY dX dY

dL dL L .
=y Derivative wrt bias
dL dL

Fiid =4 v Derivative wrt weight
16x10 16x1 1x10

81

Weight Decay and Dropout

e The loss function is usually attached with a weight
decay loss to penalize the complexity of the function
and prevent the overfitting.

L =L+ \|W|J?

e Dropout refers to the practice of disregarding certain
nodes in a layer at random during training.

‘V, \
0%:,',

A(MA
‘\i 2 7)

e All the nodes will be there during inference.

e Can be used to prevent overfitting and reduce the
dependency on any one of a single node.

U 8 I L B Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine
NY A A learning research 15.1 (2014): 1929-1958.

Layer Dropout

e LayerDrop, a form of structured dropout, which has a regularization effect during training and
allows for efficient skipping at inference time.

e |tis possible to select sub-networks of any depth from one large network without having to
finetune them and with limited impact on performance.

e Usually used in transformer.

— Pruned to 9 =
&= Train 9 Layer Model f—]
= Pruned to 6 —
&= Train 6 Layer Model = =
—_— Pruned to 3 p——
— o ¢&e—7r—m— =
[e—
&= Train 3 Layer Model
Teain'S On Demand Train One
r:nt epz]a(rate Depth Selection Full Network
etworks
TRAIN + TEST TIME Decreasing Model Size TEST TIME TRAIN TIME

NYU 8 I L B Fan, Angela, Edouard Grave, and Armand Joulin. "Reducing transformer depth on demand with structured dropout."
A A arXiv preprint arXiv:1909.11556 (2019).

DNN Training Process

e An optimizer is a crucial element that adjusts DNN parameters during training. Its primary

role is to minimize the training loss defined by the loss function.
o Epoch: The number of times the algorithm runs on the whole training dataset.
o Batch: The size of block of dataset that is used to update the model weights.
o lteration: total_training_data_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.
Training
loss Initialized W for each layer.
For each epoch:
Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)

84

Batch, Iteration and Epoch

e A data batch refers to a subset of the entire training dataset used to train the
network.

e lteration refers to a single update of the model's parameters.

e An epoch represents one complete pass through the entire training dataset. Here's

what typically happens during an epoch:
o For example, if you have 1,000 training examples and you use a batch size of 100, it would
take 10 iterations to complete one epoch.

e The composition of minibatches typically changes after every epoch during the
training of a DNN.

NYU SAI LAB

85

DNN Training Process

e An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
o Epoch: The number of times the algorithm runs on the whole training dataset.
o Batch: The size of block of dataset that is used to update the model weights dataset.
o lteration: total_trainingdata_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be
updated.

Initialized W for each layer.

For each epoch:

Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)

86

Stochastic Gradient Descent (with Momentum)

e W =W-ndL/dW
e Due to the significant noise introduced during the SGD process, it is beneficial to
stabilize the process.

o W=W-ng, g,—sg, ,+(1-s)dL/dW, s is a hyperparameter between 0 and 1, close to 1.

SGD without momentum SGD with momentum

NYU SAI LAB .

RMSProp

E[g°]: = 0.9E[g*];—1 + 0.1g7
n
VE|g?]: + €

9t+1 = 0; — gt

g =[0.02, -0.04, 1.@\,-0.01]

All operations are elementwise
operations.

When the variance of gradients is
high, we scale down the gradient as
we want to be more conservative and
vice versa.

1.6 will be scaled down with RMSProp

NYU SAI LAB| http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf 88

Adam Optimizer

Require: o: Stepsize

Require: (31,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6

Require: 6: Initial parameter vector

mg < 0 (Initialize 1*' moment vector) ° Combine RMSProp with Momentum
vo < 0 (Initialize 2™ moment vector) SGD
t < 0O (Initialize timestep) : _) _
while 6, not converged do e By adapting the learning rate during
t t%‘ lf (1) G " s o _ 5 training, Adam converges much more
gt < Vo fi(6:—1) (Get gradients w.r.t. stochastic objective at timestep ¢ .
my < B1-my—1 + (1 — By) - g, (Update biased first moment estimate) quickly than SGD.

vy < P -vy_1 + (1 — Bz) - g2 (Update biased second raw moment estimate)
iy < my /(1 — B7) (Compute bias-corrected (irst moment estimate)
U < v /(1 — 35) (Compute bias-corrected second raw moment estimate)
6, < 6,_, — a-m,/(v/, + €) (Update parameters)
end while
return 6, (Resulting parameters)

NYU SAI LAB Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). 89

DNN Training Process

e An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
o Epoch: The number of times the algorithm runs on the whole training dataset.
o Batch: The size of block of dataset that is used to update the model weights dataset.
o lteration: total_trainingdata_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be
updated.

Initialized W for each layer.

For each epoch:

Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)

20

Learning Rate Scheduler

e Learning rate n is an important hyperparameter for training the DNNs.

e Alarge learning rate can help the algorithm to converge quickly. But it can also
cause the algorithm to bounce around the minimum without reaching it or even
jumping over it if it is too large.

e If the learning rate is too small, the optimizer may take too long to converge or get
stuck in a plateau if it is too small.

W' =W-ng,

NYU SAI LAB ”

Multistage Learning Rate

Step decay of learning rate

107! 1

e The learning rate is reduced by a fixed
s amount after every T epochs.

Typically, the learning rate is reduced to
10% of its value after every T epochs.

e Widely used in image classification task.

Learning rate
[J

107 1

0 P 50 75 100 125 150 175 200
Epoch

NYU SAI LAB

Cosine Learning Rate

epoch_Ir

NYU SAI LAB

oy
i — nmin 5

1

2

(

7
Imaz —

e \We propose to periodically
simulate warm restarts of SGD,
where in each restart the learning
rate is initialized to some value and
is scheduled to decrease.

e Periodic restart can effectively
avoid local minima and saddle
points during the training.

' T(‘ur
7’:717;71)(1 T COS(T ﬂ-)):

(3

Loshchilov, llya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint

arXiv:1608.03983 (2016).

93

Cosine Learning Rate

Learning rate schedule

0

e Tcur accounts for how

10 .

10

107

107

Learning rate

10"

()

S

AN

™

20

NYU SAI LAB

40

i — n:nzn + _(n:nax - n:nzn)(l + COS(T

100 120 140
Epochs

1
2

160 180

200

many iterations have

—e— Default, Ir=0.1 .
—E— Default, I=0.05 been performed since
—O—To= 50 T =1 the last restart.

T =100, T =1
P 0_ mult- PY
—&—T1,=200,T =1
+T£)=1’Tmult=2

- = ()
_A_To-10,Tmu"—2

Tcur is updated at
each iteration t.
The SGD is restarted

once Ti epochs are
performed, where i is
the index of the run.

e Ti may increase with i.

TCUT
7)),

2

Loshchilov, llya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts.” arXiv preprint arXiv:1608.03983 94

(2016).

Cyclical Learning Rate

Maximum bound
(max_Ir)

e Increasing the learning rate might have a short
term negative effect and yet achieve a longer term
beneficial effect.

Minimum bound
(base_Ir)

stepsize

NYU SAI LAB Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of

computer vision (WACV). IEEE, 2017. »

Cyclical Learning Rate

CIFAR-10

e ponp = |

e The red curve shows the result of training
with cyclical learning rate achieves the
- shortest convergence time.

0.4 ---Original learning rate| 7
0.3 ---Exponential |

' —CLR (our approach)
0 1 2 3 -+ 5 6 7
Iteration 216"

NYU SAI LAB

Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2017.

96

DNN Training Process

e An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
o Epoch: The number of times the algorithm runs on the whole training dataset.
o Batch: The size of block of dataset that is used to update the model weights dataset.
o lteration: total_trainingdata_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be
updated.

Initialized W for each layer.

For each epoch:

Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)

97

DNN Initialization: Kaiming Initialization

e Kaiming initialization is designed for modern DNN that uses ReLU.

2
W N (o, ﬁ) ’
e Target: ensure the activation variance is the same Linear
across different layers.
e Assumption: Xl

o RelLU activation.
o Weight is normally distributed with mean of zero.
o Weight and activations are independent.

U L He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification."
N Y SAI AB Proceedings of the IEEE international conference on computer vision. 2015.

98

Derivation

y: = Wix; + by

Assume W has a shape of mi by ni, and xi has a size of ni x1, then yi has a size of mi
X1 . ny

For each element yiiof y, its variance var(y;;) = var(E Wi xi) = nvar(Wy; iz ;)
j=1
Assume each pair of Wiijand x; are independent random variable, then we have:

var(Wi, o) = EW) a1 ;) — B* (Wi jai;) = E(WS;) E(z;) — B> (Wi ;) E* (1)

Assume Wi,jfollows a normal distribution with mean of 0, that is E(W..i;) = 0, then:
var(Wy jx1;) = var(Wi ;) E(xf)

var(yi;) = nar(Wii ;) = mvar(Wi ;) E(x7)

NYU SAI LAB

929

Derivation

Let see how E(xuz) is related to the variance of y.1, where xl,j=ReLU(y|-1,j)

E(a:lzy) = E(ReLUz(yl_l,j))

Then we have: E(ReLU(y;-1;)?)

= E(ReLU(y1-1,)*|yi-1; > 0)P(yi_1,; > 0) + E(ReLU (yi-1,5)*|y1-1,; < 0)P(y1-1,; < 0)
= E(ReLU(y1-1,)*yi-1; > 0)P(yi-1,; > 0) = 0.5E(y;, ;) = 0.5var(yi1,;)

Therefore, we have: E(z;) = 0.5var(yi-1,;)
Given this, we have:

var(y;) = nlvar(Wl,i,j)E(wij) = 0.5nwar(Wy; j)var(yi-1,5)

100

NYU SAI LAB

Derivation

var(y;) HO dnsvar(W; ;))var(yi,;)

In order to ensure the variance of y does not change, we have to make sure:

2
var(Ws;) = n, Weid ~N (0,,/%)

101

NYU SAI LAB

