
Lecture 0:
Introduction and Course

Overview

ECE-GY 9483 / CSCI-GA 3033
Special Topics: Efficient AI and Hardware Accelerator Design

2

Self Introduction
● Assistant Professor, NYU, ECE & CS, lead System & AI

(SAI) lab.
● A senior research scientist at Meta, 2022-2024.
● Academic trajectory

○ University of Toronto
■ Bachelor and Master in ECE
■ Master in Statistics

○ Harvard University
■ PhD in CS

● Research Interest:
○ Efficient AI Algorithm
○ AI Hardware Accelerator
○ AR/VR System

3

Course Information
● Course website: https://www.saiqianzhang.com/COURSE/
● I use Brightspace to post announcements and grades
● I provide an online zoom meeting option for people interested

in auditing the class. However, enrolled students are required
to attend in person unless special condition.

● Discussion groups has been created in the Brightspace
● Course email: efficientaiaccelerator@gmail.com

https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/93825201038?pwd=YScgBkdxIBLmnLpvkyXXxqCXRgy98T.1&jst=2

4

Course Information
● The course will involve 13 lectures, 3 coding assignments, 1 final project, 1 midterm exam and

in-class quiz.
○ In-class quiz (15%)
○ In-course presentation (5%)
○ Assignments (30%): total three of them, each counts 10%
○ Midterm (25%)
○ Final project (25%)

■ Project Proposal (5%) (1 page)
■ Final Presentation (10%)
■ Final Report (10%)

● Readings:
○ Course notes and papers (optional)
○ (reference) Goodfellow, Ian. "Deep learning." (2016). https://www.deeplearningbook.org/

● Lecture time:
○ Friday: 5:00pm-7:30pm

● Office hour:
○ Friday: 1:30pm-2:30pm, or by appointment (Zoom)

https://www.deeplearningbook.org/
https://nyu.zoom.us/j/94617243355?pwd=tfvBBL2QnxUDzbdXbmM0CjWjHKekwI.1&jst=2

5

In-Course Presentation General Policy
● Please use Google Slides to create your presentation slides.
● Sign up here:

https://docs.google.com/spreadsheets/d/1QL7qBQnMluk-uTniPeH0H6i4ij40
hVbuOo0ACXBCMV4/edit?usp=sharing

● There is limit on the number of slides (10 pages for algorithmic paper, 14
pages for architectural paper), make sure to stay within the presentation
time limit (15 mins for algorithm paper, 25 mins for arch paper).

● Submission Deadline: Please send the link to your Google Slides
presentation by Friday before 2:00 PM each week to Shawn Yin
(xy2053@nyu.edu)

● Please ensure that the Google Slides link is set to 'Anyone with the link can
view' so that it is accessible to us.

6

In-Course Presentation Format
● Paper Presentation (3 persons, 15 mins for Algorithm paper, 25 mins for

Arch paper):
○ Content

■ Introduction
■ Background
■ Methodology
■ Evaluation
■ Your thoughts & Discussion

○ Evaluation criteria
■ Clarity (3): Did the presenter articulate the main goals of their research or analysis?
■ Structure and Flow (2): Was the presentation logically organized?
■ Depth of Analysis (3): Did the presenter demonstrate a good understanding of the

paper?
■ Discussion with audience (2)
■ The grade may differ based on the individual performance

7

Course Feedback from Previous Semesters

8

Course Feedback from Previous Semesters

9

Course Assistant/Grader
Shawn Yin (CA) Yifei Feng (CA) Handong Ji (Grader)

Office hour: Monday
1:00pm-2:00pm

(Zoom)

Office hour: Wednesday
11:00am-12:00pm

(Zoom)

https://nyu.zoom.us/j/92280980529
https://us04web.zoom.us/j/72875854880?pwd=q6QhqaxoWLbarB4joAe0dlhadDheCE.1

10

Life is Powered by Deep Learning

● More desirable modern services are enabled by DNN

● Deep Neural Networks (DNNs) have achieved state-of-the-art performance
across a variety of domains
○ Image Recognition
○ Video Processing
○ Natural Language Processing
○ Autonomous Driving

Convolutional
Neural Network

(CNN)
‘rose’

Image Classification

Non
CNNs CNNs

11

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’
● Use a Convolutional Neural Network

(CNN) as an example
● This CNN contains four layers

○ 3 convolutional layers
○ 1 fully connected layer

12

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

13

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

14

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

15

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

16

How Deep Neural Network is Executed?

CNN with
4 layers

Fully Connected

Convolution

Convolution

Convolution

‘rose’

17

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

= ?

Matrix View

Weight
Matrix

Data
Matrix

● Weight matrices are
learned during training

18

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Weight matrices are
learned during training

=

19

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow
this pattern.

=

=

= ?

20

DNN Execution: A Matrix View
Layer View

Fully Connected

Convolution

Convolution

Convolution

Matrix View

● Remaining layers follow
this pattern

=

=

=

=
‘rose’

21

Deployment of DNN: Problems

VGG-16 is a CNN with
over 150M weights
across 16 matrices

● The majority of computation workloads
for DNN inference involves a series of
matrix multiplications.

22

Deployment of DNN: Problems
● DNN suffers due to:

○ High energy consumption
○ High processing latency
○ High storage cost

● DNN needs to maintain high accuracy

20B multiply/adds
per image

Bianco, Simone, et al. "Benchmark analysis of representative deep neural network architectures." IEEE Access
6 (2018): 64270-64277.

The
higher

the
better

The lower
the better

23

The Era of Large Models (LMs)

24

Cost of Large Models

2017

36

72

108

144

180

M
od

el
 s

iz
e

(b
ill

io
ns

)

● 1.4e12 FLOPs to execute GPT-2.

2018 2020 20212019

Transformer
(0.05B)

GPT-1
(0.11B)

BERT
(0.34B)

GPT-2
(1.5B)

MegaTron-LM
(8.3B)

GPT-3
(175B)

T-NLG
(17B)

GPT-4
(>1T)

25

The Cost of Large Models

● Training GPT-4 required 25,000 A100 GPUs
over several weeks.

● Cost: Renting a single high-end GPU on cloud
services like AWS can cost $3–$5 per hour.
Training GPT-4 is estimated to cost $63-100
million on cloud computing resources.

26

Efficient AI: An Emerging Area

Design more aggressive and efficient AI model is
of paramount importance

LLaMA 3.1

27

Efficient AI: An Emerging Area

Moore’s
law

DNN
workload

The amount of compute supported within a
hardware unit is growing slowly

DNN workload grows
exponentially

How to reduce the compute while
maintaining a good DNN accuracy?

28

Efficient AI: An Emerging Area

● Efficient AI has become one of the
most popular areas in AI
community.

● The recent emergence of large
models has further heightened
the need for efficient AI.

29

Efficient AI: An Emerging Area

Jobs at Meta Jobs at Google

30

AI Tech Startups/Unicorns

31

Efficient AI: An Emerging Area

Challenges

Accurate

Hardware
efficient Generic

Ideal
solution

32

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning

33

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w

Quantization

Distillation & Low rank

Algorithmic Optimization

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

Pruning

Distributed system, Multicore

34

Algorithmic Optimization

Convolution

=H

W

C

Depthwise
Conv

=

3
3

3
3H

W

C

Pointwise
Conv

=
1

1

Standard Convolution

Depthwise Separable Convolution

35

Efficient DNN Algorithm: Pruning

DNN weights

0.1 3 1

0.2 -1

-8 1.40.6-1

Prune
1.2 0.2

0.2 0 3 1

0 -1

-8 1.40-1

1.2 0

0

36

Efficient DNN Algorithm: Quantization

Quantize
(-10, 10)DNN weights

8.5 3 1

3.9 -1

8.1 1.40.6-1

1.2 4.6

0.2 9 3 1

4 -1

8 11-1

1 5

0

37

Knowledge Distillation

38

QSVD

● We propose leveraging Singular-Value Decomposition over the joint query (Q), key (K),
and value (V) weight matrices to reduce KV cache size and computational overhead.

39

Speculative Decoding with DREAM

● We introduce DREAM, a novel speculative decoding framework tailored for VLMs.

40

Efficient AI: Full-stack Workflow

Circuit-level Optimization

Fu
ll-

st
ac

k
W

or
kf

lo
w Pruning

Quantization

Distillation & Low rank

Single Core, SoC

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator

Algorithmic Optimization

Distributed system, Multicore

Graph optimization

Kernel-level optimization

41

Graph Level Optimization
 CAMEL Training

Zhang, Sai Qian, et al. "Camel: Co-designing ai models and edrams for efficient on-device learning." 2024 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.

42

System Level Optimization

MemCompute
Core

Round 1
Step 1

Step 3
Step 2

MemCompute
Core

Round 2
Step 4

Step 6
Step 5

MemCompute
Core

Step 1

Step 2
MemCompute

Core
Step 3 Step 4

Round 1 Round 2

43

System Level Optimization
● How to convert a number x to INT representation?

○ Set the clipping range: (-L, L), bitwidth: b
○ Compute the scale:
○ Clip the input x:
○ Calculate the INT representation:
○ Rescale:

INT
Conv

FP2
INT

INT2
FP

Batch
Norm

ReLU INT
Conv

FP2
INT …

Layer l FP2INT is not cheap! But we can
explore some system-level solution

44

Kernel Fusion
to

ke
n_

nu
m

embedding_dim

…

1. assign each token to a GPU block
GPU block

token [i, i+128]

Norm

2. assign a fraction of a
 token to each thread

A thread in block

3. parallely calculate
 normalization/activation
 and max abs of each part

4. tree-based parallel
 reduction for threads

+ Max
Abs

● For example, we can fuse the max searching operation to the batch
normalization operation within LLM.

45

Efficient AI: Full-stack Workflow

Fu
ll-

st
ac

k
W

or
kf

lo
w Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
Circuit-level Optimization

Single Core, SoC

Distributed system, Multicore

Graph optimization

Kernel-level optimization

Pruning

Quantization

Distillation & Low rank

Algorithmic Optimization

46

Hardware Support for DNN
● GPU is better than CPU in terms of throughput for both Neural Network

training and inference.
○ GPU leverages the highly parallelized architecture of its computing

units to handle computational intensive operations.
● However, GPU:

○ General purpose, although much more specific than CPU.
○ Still not fast and power-efficient enough.
○ Does not support advanced efficient DNN algorithm.

47

NVIDIA
Chip size 814 mm2

On-chip memory ~50MB

Total memory ~96GB HBM

Cores 16,896 FP32 + 528
Tensor

Precision FP16/FP8/INT8

Memory
bandwidth

0.003
Petabytes/secNVIDIA H100

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974

48

NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM

Cores -

Precision FP16/FP8/FP4/INT8

Memory bandwidth 8 Terabytes/sec
NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5
x-ai-performance-192-gb-hbm3e-memory/

49

Hardware Support for DNN

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx)

● ASIC-based implementations have been recently explored to accelerate the DNN inference.
○ Google’s TPU, Apple’s Neural Engine, Cerebras AI chip, …

● FPGA-based accelerators for DNN inference have been recently developed.
○ Has good programmability and flexibility
○ Short development cycles
○ Can be used as a benchmark before implementing on ASIC

Cerebras CS-3

50

Systolic Array
● Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982
● 2D grid of multiplier-accumulators (MACs) for matrix multiplication
● Used by Google TPU for deep learning (2017), etc

2D Systolic Array

x

v

z = w·x + y
v = x

z

Systolic cell

y

TPU (Google)

51

Bit-serial Low-precision Multiplier

52

Why We Need Codesign?

Circuit-level Optimization

Graph optimization

Kernel-level optimization

Jo
in

t O
pt

im
iz

at
io

n
Single Core, SoC

Distributed system, Multicore

Quantization

Distillation & Low rank

Algorithmic Optimization

Pruning

53

Why We Need Codesign?

Input
Dense
Weight Input

Sparse
Weight

0
Input

0

Unstructured

Sparse
Weight

Structured

High accuracy
low hardware efficiency

Low accuracy
high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.

54

Column Combining
 Sparse

Weight Matrix

Column Combining
8x reduction in size

 Packed Format in
Systolic Array

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

55

Column Combining

x1 x2 x3 x4

-3

-2

1

4

-1

-4

3

-6

x1 x2 x3 x4

(b) Systolic Array After
Column Combing

(a) Standard
Systolic Array

Column
Combining -6

-3

0

4

0

-2

1

0

0

0

-64

-1

-4

03

 1

-6 kept due to
larger magnitude

● Column combining can greatly increase the utilization efficiency of the systolic array
● Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU

Yin

x3 x4

Yout

x3 x4

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

56

FPGA Accelerator

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.

57

Term Quantization

24 21 2023 22

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

W1 =
1

W2 = 12
W3 =

5
W4 = 137

8-bit uniform quantization
252627

0
0
0
0

0
0
0
0

0
0
0
1

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

0
0
0
0

0
0
0
0

0
0
0
1

4-bit
W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

4-bit uniform quantization
24 21 2023 22252627

● Low-precision quantization leads to significant quantization error.
● Both weights and input activation are highly biased in values.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

58

Term Quantization
21 2022

1 0
1 0 1
0

W
2
5

W’
2
4

21 2022

0 1
1 1

X
9
3

X’
8
2

23

0
0

0
0

0
1
23

[21,22]

[23,21]

21x23+22x2
1

dot productBudget = 2

4-bit uniform quantization
24 21202322

0 1
1 0 0
1 0 1
0 0 1

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

24 21202322

1
1
0

0 0
0
0
0

0
1
0
1

252627
0
0
0
0

0
0
0
0

0
0
0
1

0 1
0 0
0 1
0 1

TQ with a budget = 4

W’1 = 0
W’2 = 0
W’3 = 0
W’4 = 128

W’1 = 0
W’2 = 12
W’3 = 0
W’4 = 136

● We can control the term-level computations by setting a group term budget.
● For a group of values, we rank and remove the small terms based on this budget.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

59

Term Quantization: Accelerator Design

Weight exponent queue +

Data exponent queues

4 43 22 11 0
+++++ + + +Sign

+3
0 tMAC

YoutTerm
accumulator

Yin

+
+2

1 +
+4

0 +
+1

0 +

 0 2 3 0
Weight index queue

 1 1 3 0

Systolic Array of tMAC

tMAC tMAC

tMAC tMAC

tMAC tMAC

tMAC

tMAC

tMAC

...

...

...

...

...

● We propose the term MAC (tMAC) for the efficient implementation of TQ.
● A tMAC processes all term-pair multiplications across a group of weight and data values.
● Each term is represented by their corresponding exponent (2-3 bits).
● The term accumulation can be implemented using half adders.

Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).

60

Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

● We propose using embedded DRAM (eDRAM) as the primary storage for LLM serving in edge device,
which offers higher storage density compared to SRAM.

● To reduce eDRAM costs and improve overall system performance, we propose Kelle, a
software-hardware co-design solution optimized for deploying LLMs on eDRAMbased edge systems.

61

Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

● Combined with our fine-grained
memory eviction, recomputation, and
refresh control algorithms, the Kelle
accelerator delivers a 3.9× speedup
and 4.5× energy savings compared to
existing baseline solutions.

62

Lecture Plan (Tentative)
Chapter 1: Basics and Efficient DNN Architectures
● Lecture 1: Review the basics of DNN
● Lecture 2: CNNs, RNNs and Variants
● Lecture 3: Transformer and its Application in AIGC

63

Lecture Plan (Tentative)
Chapter 2: Efficient DNN Algorithms
● Lecture 4: DNN Pruning
● Lecture 5: DNN Quantization
● Lecture 6: Distillation, Low rank Decomposition and NAS
● Lecture 7: Algorithm for Large Model Efficiency
● Lecture 8: Efficient DNN Training, Distributed Training, Federated Learning

64

Lecture Plan (Tentative)
Chapter 3: System and Hardware Design for AI
● Lecture 9: Distributed Machine Learning System for Training and Inference
● Lecture 10: CNN Dataflow & Hardware Accelerators
● Lecture 11: Transformer & LLM Accelerators
● Lecture 12: Hardware Accelerator for DNN Training
● Lecture 13: New Computation Paradigms / ARVR Computing

Lecture 1:
Neural Network Basics

ECE-GY 9483 / CSCI-GA 3033
Special Topics: Efficient AI and Hardware Accelerator Design

66

Basics of Deep Neural Networks
● Multi-layer Perceptrons (MLPs)

○ Fully-connected layers
○ Activation functions
○ Loss function
○ Backpropagation

● How forward and backward propagation is performed?
● How to compute the gradient?
● How to update the weight?
● How to initialize the weight before training?

67

Multi-layer Perceptrons

● A neural network consists of interconnected nodes, called neurons, organized into layers.
● Each neuron receives input signals (activations), performs a computation on them, and

produces an output signal that may be passed to other neurons in the network.

● Usually consists of fully-connected layers with nonlinear activation functions.

68

Fully-connected layers (Linear layers)

Input
Neurons/Features/

Activations

Output
Neurons/Features/

Activations

Weights/Synapses Y = XW + b
● X (input activations): B✕Cin

● Y (output activations): B✕Cout

● W (weights): Cin✕Cout

● b (bias): 1✕Cout

● Cin: Number of input activations
● Cout: Number of output activations
● B: batch size

Linear
Input

Nonlinear … Softmax
Output

Linear Nonlinear

Cin=4, Cout=3

69

Computational Cost for MLP
softm

ax

B
x2 B
x3

2x3

● Number of multiply-accumulate operations (MACs):
○ Bx2x3 = 6B

● Storage cost:
○ 6 x 32 = 192 bits (Weights)
○ (2B + 3B) x 32 bits (Activation)

70

Sigmoid

● Function:
● Domain:
● Range: [0,1]
● Differentiable everywhere
● Derivative: δ(x)(1-δ(x))

71

Tanh

● Function:
● Domain:
● Range: [-1,1]
● Differentiable everywhere
● Derivative:

72

ReLU

● Domain:
● Range: [0,]
● Differentiable everywhere

73

Leaky ReLU

● Domain:
● Range:

ReLU
Leaky
ReLU

74

Softmax
● Domain: [-∞∞]N

● Range: [0,1]N
● It is a multivariate function

Linear
Input

Nonlinear … Softmax
Output

Linear Nonlinear

Block 1

In
p

u
t

Softmax

O
utput

Block 2
16✕16 16✕16

1✕
16

1✕
16

1✕
16

1✕
10

Block 3
16✕16

1✕
16

1✕
10

Block 4
16✕10

75

Block 1

In
p

u
t

Softmax

O
utput

Block 2 Block 3

(1
✕

10)
Loss Functions

● Loss functions quantify the difference between the DNN output and
the ground truth output in the training dataset.

Cross-entropy lossL2 loss

Block 4

G
round Truth Forward propagation Backward propagation

76

Softmax

● Domain:
● Range: [0,1]

When s has a
dimension of 3

Block 1

In
p

u
t

Softmax

O
utput

Block 2

1✕
10

Block 3

1✕
10

Block 4

1✕
10

1✕
10

77

Backpropagation for Nonlinear Layers

Linear Nonlinear

Block 1
16✕16

1✕
16

1✕
16

Nonlinear

1✕
16

1✕
16

1✕
16

1✕
16

Forward propagation
Backward propagation

● Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.

78

Backpropagation for Nonlinear Layers

● Tanh:

● ReLU:

● Leaky_ReLU:

● Sigmoid:

79

Backpropagation for Nonlinear Layers

Linear Nonlinear

Block 4
16✕10

1✕
16

1✕
10

Linear

1✕
16

1✕
10

1✕
16

1✕
10

Forward propagation
Backward propagation

● Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.

16✕10

80

Fully-connected layers (Linear layers)

Y = XW + b
Derivative wrt data

Derivative wrt bias

Derivative wrt weight

T T

1✕16 1✕10 10✕16

1✕1016✕10 16✕1

Linear

1✕
16

1✕
10

1✕
16

1✕
10

16✕10

Linear Nonlinear

Block 4
16✕10

1✕
16

1✕
10

81

Fully-connected layers (Linear layers)

Y = XW + b

● X (input activations): B✕Cin

● Y (output activations): B✕Cout

● W (weights): Cin✕Cout

● b (bias): 1✕Cout

Derivative wrt data

Derivative wrt bias

Derivative wrt weight

T T

1✕16 1✕10 10✕16

1✕1016✕10 16✕1

Linear

1✕
16

1✕
10

1✕
16

1✕
10

16✕10

82

Weight Decay and Dropout

● The loss function is usually attached with a weight
decay loss to penalize the complexity of the function
and prevent the overfitting.

● Dropout refers to the practice of disregarding certain
nodes in a layer at random during training.

● All the nodes will be there during inference.

● Can be used to prevent overfitting and reduce the
dependency on any one of a single node.

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine
learning research 15.1 (2014): 1929-1958.

83

Layer Dropout

Fan, Angela, Edouard Grave, and Armand Joulin. "Reducing transformer depth on demand with structured dropout."
arXiv preprint arXiv:1909.11556 (2019).

● LayerDrop, a form of structured dropout, which has a regularization effect during training and
allows for efficient skipping at inference time.

● It is possible to select sub-networks of any depth from one large network without having to
finetune them and with limited impact on performance.

● Usually used in transformer.

84

DNN Training Process
● An optimizer is a crucial element that adjusts DNN parameters during training. Its primary

role is to minimize the training loss defined by the loss function.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights.
○ Iteration: total_training_data_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

Training
loss

85

Batch, Iteration and Epoch
● A data batch refers to a subset of the entire training dataset used to train the

network.
● Iteration refers to a single update of the model's parameters.
● An epoch represents one complete pass through the entire training dataset. Here's

what typically happens during an epoch:
○ For example, if you have 1,000 training examples and you use a batch size of 100, it would

take 10 iterations to complete one epoch.
● The composition of minibatches typically changes after every epoch during the

training of a DNN.

86

DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset.
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

87

Stochastic Gradient Descent (with Momentum)

● W’ = W - η dL/dW
● Due to the significant noise introduced during the SGD process, it is beneficial to

stabilize the process.
● W’ = W- ηgt gt → sgt-1+(1-s)dL/dW, s is a hyperparameter between 0 and 1, close to 1.

SGD without momentum SGD with momentum

88

RMSProp

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

● All operations are elementwise
operations.

● When the variance of gradients is
high, we scale down the gradient as
we want to be more conservative and
vice versa.

g = [0.02, -0.04, 1.6, -0.01]

1.6 will be scaled down with RMSProp

89

Adam Optimizer

Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).

● Combine RMSProp with Momentum
SGD.

● By adapting the learning rate during
training, Adam converges much more
quickly than SGD.

90

DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset.
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

91

Learning Rate Scheduler
● Learning rate η is an important hyperparameter for training the DNNs.
● A large learning rate can help the algorithm to converge quickly. But it can also

cause the algorithm to bounce around the minimum without reaching it or even
jumping over it if it is too large.

● If the learning rate is too small, the optimizer may take too long to converge or get
stuck in a plateau if it is too small.

W’ = W- η gt

92

Multistage Learning Rate

● The learning rate is reduced by a fixed
amount after every T epochs.

● Typically, the learning rate is reduced to
10% of its value after every T epochs.

● Widely used in image classification task.

93

Cosine Learning Rate

Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint
arXiv:1608.03983 (2016).

● We propose to periodically
simulate warm restarts of SGD,
where in each restart the learning
rate is initialized to some value and
is scheduled to decrease.

● Periodic restart can effectively
avoid local minima and saddle
points during the training.

94

Cosine Learning Rate

Loshchilov, Ilya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint arXiv:1608.03983
(2016).

● Tcur accounts for how
many iterations have
been performed since
the last restart.

● Tcur is updated at
each iteration t.

● The SGD is restarted
once Ti epochs are
performed, where i is
the index of the run.

● Ti may increase with i.

95

Cyclical Learning Rate

Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2017.

● Increasing the learning rate might have a short
term negative effect and yet achieve a longer term
beneficial effect.

96

Cyclical Learning Rate

Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2017.

● The red curve shows the result of training
with cyclical learning rate achieves the
shortest convergence time.

97

DNN Training Process
● An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
○ Epoch: The number of times the algorithm runs on the whole training dataset.
○ Batch: The size of block of dataset that is used to update the model weights dataset.
○ Iteration: total_trainingdata_size/Batch
○ Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.

Initial
weights

Final
weights

Initialized W for each layer.
For each epoch:
 Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.

 Update the weights
Update the learning rate (if necessary)

98

DNN Initialization: Kaiming Initialization

He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification."
Proceedings of the IEEE international conference on computer vision. 2015.

● Kaiming initialization is designed for modern DNN that uses ReLU.

● Target: ensure the activation variance is the same
across different layers.

● Assumption:
○ ReLU activation.
○ Weight is normally distributed with mean of zero.
○ Weight and activations are independent.

Linear

xl

yl

99

Derivation

Assume Wl has a shape of ml by nl, and xl has a size of nl ✕1, then yl has a size of ml
✕1.
For each element yl,i of yl, its variance

Assume each pair of Wl,i,j and xj are independent random variable, then we have:

Assume Wl,i,j follows a normal distribution with mean of 0, that is E(Wl,i,j) = 0, then:

100

Derivation
Let see how E(xl,j

2) is related to the variance of yl-1,j, where xl,j=ReLU(yl-1,j)

Then we have:

Therefore, we have:

Given this, we have:

101

Derivation

In order to ensure the variance of y does not change, we have to make sure:

