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Self Introduction

e Assistant Professor, NYU, ECE & CS, lead System & Al
(SAI) lab.
A senior research scientist at Meta, 2022-2024.
Academic trajectory
o University of Toronto
m Bachelor and Master in ECE
m Master in Statistics
o Harvard University
m PhDIinCS
e Research Interest:
o Efficient Al Algorithm
o Al Hardware Accelerator
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Course Information

e Course website: https://www.saigianzhang.com/COURSE/
e | use Brightspace to post announcements and grades
e | provide an online zoom meeting option for people interested

In auditing the class. However, enrolled students are required
to attend in person unless special condition.

e Discussion groups has been created in the Brightspace

e Course emalil: efficientaiaccelerator@gmail.com
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https://www.saiqianzhang.com/COURSE/
https://nyu.zoom.us/j/93825201038?pwd=YScgBkdxIBLmnLpvkyXXxqCXRgy98T.1&jst=2

Course Information

e The course will involve 13 lectures, 3 coding assignments, 1 final project, 1 midterm exam and
in-class quiz.
o In-class quiz (15%)
In-course presentation (5%)
Assignments (30%): total three of them, each counts 10%
Midterm (25%)
Final project (25%)
m  Project Proposal (5%) (1 page)
m  Final Presentation (10%)
m  Final Report (10%)
e Readings:
o Course notes and papers (optional)
o (reference) Goodfellow, lan. "Deep learning." (2016). https://www.deeplearningbook.org/
e Lecture time:
o Friday: 5:00pm-7:30pm
e Office hour:
o Friday: 1:30pm-2:30pm, or by appointment (Zoom)

O O O O
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https://www.deeplearningbook.org/
https://nyu.zoom.us/j/94617243355?pwd=tfvBBL2QnxUDzbdXbmM0CjWjHKekwI.1&jst=2

In-Course Presentation General Policy

e Please use Google Slides to create your presentation slides.

e Sign up here:
https://docs.google.com/spreadsheets/d/1QL7gBQnMIuk-uTniPeHOHG6i4ij40
hVbuOoOACXBCMV4/edit?usp=sharing

e There is limit on the number of slides (10 pages for algorithmic paper, 14
pages for architectural paper), make sure to stay within the presentation
time limit (15 mins for algorithm paper, 25 mins for arch paper).

e Submission Deadline: Please send the link to your Google Slides
presentation by Friday before 2:00 PM each week to Shawn Yin
(xy2053@nyu.edu)

e Please ensure that the Google Slides link is set to 'Anyone with the link can
view' so that it is accessible to us.

NYU SAI LAB




In-Course Presentation Format

e Paper Presentation (3 persons, 15 mins for Algorithm paper, 25 mins for
Arch paper):

@)

@)

Content
m Introduction
m Background
m  Methodology
m Evaluation

Your thoughts & Discussion

Evaluation criteria

NYU SAI LAB

Clarity (3): Did the presenter articulate the main goals of their research or analysis?
Structure and Flow (2): Was the presentation logically organized?

Depth of Analysis (3): Did the presenter demonstrate a good understanding of the
paper?

Discussion with audience (2)

The grade may differ based on the individual performance



Course Feedback from Previous Semesters

What is your overall satisfaction with the course?

Very Satisfied 14 87.50% (GG
Somewhat Satisfied 2 1250% D

Neutral 0 0.00%

Somewhat Dissatisfied 0 0.00%

Very Dissatisfied 0 0.00%

Total 16 0% 50% 100%
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Course Feedback from Previous Semesters

Amazingly built course on all fronts, format/ teaching style/ resources etc. Very engaging and pleasurable experience

The course is very practical and cutting—edge. Is a good introduction course for student who want to take part in related research. It
would be better taken in the afternoon or earlier. Cause the content is a lot and need high attention to catch up with the pace. In my
opinion, I'm feeling a little bit tired during the left half of the lecture.

Amazing course. Professor Sai is doing a great job. Course structure, quizzes, midterm, assignments, project-All were super helpful
and great.
Also, very nice, polite, understanding and approachable professor.

Professor is really nice and helpful in explaining any topic. Best professor he is
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Course Assistant/Grader

Shawn Yin (CA) Yifei Feng (CA) Handong Ji (Grader)

Office hour: Monday
1:00pm-2:00pm 11:00am-12:00pm
(Zoom) (Zoom)
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https://nyu.zoom.us/j/92280980529
https://us04web.zoom.us/j/72875854880?pwd=q6QhqaxoWLbarB4joAe0dlhadDheCE.1

Life is Powered by Deep Learning

e Deep Neural Networks (DNNs) have achieved state-of-the-art performance
across a variety of domains
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How Deep Neural Network is Executed?

e Use a Convolutional Neural Network
(CNN) as an example

e This CNN contains four layers
o 3 convolutional layers
o 1 fully connected layer

NYU SAI LAB
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How Deep Neural Network is Executed?

‘rose’

Fully Connected

T

Convolution

T CNN with
4 layers

Convolution

Convolution

NYU SAI LAB




DNN Execution: A Matrix View
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Matrix View
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Data
Matrix

Weight matrices are
learned during training
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DNN Execution: A Matrix View
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Weight matrices are
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DNN Execution: A Matrix View

Layer View Matrix View
*

Fully Connected
A

e Remaining layers follow
this pattern.

Convolution t-------=7"7- > X =
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\
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DNN Execution: A Matrix View

Layer View Matrix View
4 ‘rose’
Fully Connected |--------"""- > X = [
4 ».__-_ e Remaining layers follow
: : this pattern
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A
Convolution X @ =
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Deployment of DNN: Problems

e The majority of computation workloads
for DNN inference involves a series of
matrix multiplications.

‘rose’
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o

VGG-16 is a CNN with
over 150M weights
across 16 matrices
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Deployment of DNN: Problems

DNN suffers due to:

o High energy consumption

o High processing latency

o High storage cost

DNN needs to maintain high accuracy

NYU SAI LAB
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The Era of Large Models (LMs)
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Cost of Large Models
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The Cost of Large Models

NYU SAI LAB

Training GPT-4 required 25,000 A100 GPUs
over several weeks.

Cost: Renting a single high-end GPU on cloud
services like AWS can cost $3—-$5 per hour.
Training GPT-4 is estimated to cost $63-100
million on cloud computing resources.
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Efficient Al: An Emerging Area

ARCHITECTURE
Model Size FP16 FPS INT4 o i
................. T e
3
8B 16 GB 8 GB 4GB e
SeGLy
70B 140 GB 70 GB 35GB ——
e ; & ' Nx
4058 LLaMA 3.1 810 GB 405 GB | 203GB | ; P :

with KV Cache

Postionsl Ereodegs

Design more aggressive and efficient Al model is
of paramount importance
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Efficient Al: An Emerging Area

hardware unit is growing slowly

DNN
workload DNN workload grows
exponentially

How to reduce the compute while

The amount of compute supported within a /

NYU SAI LAB maintaining a good DNN accuracy?
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Efficient Al: An Emerging Area

Research Publications on DNN Pruning and Quantization (2015-2023)
850

—e— Publications
---- Trendline
800

o
=}
=)

Number of Publications
B
o

N
o
S

2017

2018

20&9
Year

2020

2021

2022

2023

Efficient Al has become one of the
most popular areas in Al
community.

The recent emergence of large
models has further heightened
the need for efficient Al.
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Al Tech Startups/Unicorns
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Efficient Al: An Emerging Area
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Challenges

olution
Hardware
efficient '




Efficient Al: Full-stack Workflow

NYU SAI LAB

Full-stack Workflow

S

‘VV

Algorithmic Optimization

Distillation & Low rank

[ Graph optimization ]

[ Kernel-level optimization ]

[ Distributed system, Multicore ]
[ Single Core, SoC ]

[ Circuit-level Optimization ]

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
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Efficient Al: Full-stack Workflow

AAL

NYU SAI LAB

Full-stack Workflow

Algorithmic Optimization

Distillation & Low rank

Efficient Algorithm

DNN Compiler

DNN Hardware Accelerator
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Algorithmic Optimization

DepthW|se Separable Convolutlon

_______________________________________________

Depthwise
Conv
_______ Standard Convolution | © iﬂ _
' Convolution ) H 3 =
| : i | 3 i
T o W |
H 3 B Pointwise
3 : Conv
1 W | :
: l T
5 1
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Efficient DNN Algorithm: Pruning

% 0.1 3 160.2] 1 (¢] 3160 1
0.2]1.2]|0.2( -1 0 (1.2 0 |-1
) Prune
DNN weights —

% -8 |-1l0.6|1.4 -8|-1]|0 (1.4
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Efficient DNN Algorithm: Quantization

% 8.5 3 10.2] 1 9 3 (6 1
3.9/|1.2|4.6| -1 Q;Jgn!]]ge 4 1 5 | -1
DNN weights 19.19)
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Knowledge Distillation
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Teacher Model
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QSVD

Calibration
dataset

Step 1:
Joint SVD over QKV Weight

QSVD

Step 3:
Post-training Quantization
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- = &

Q: What is the S
« lcustomer review| g
| ]
& & @
Step 2: Learnable rank S Titliae smoo{ﬁng

>
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w

N

Language model

— Loss -/ P Token Concatenation

e We propose leveraging Singular-Value Decomposition over the joint query (Q), key (K),

and value (V) weight matrices to reduce KV cache size and computational overhead.
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Speculative Decoding with DREAM
[ ) tot
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We introduce DREAM, a novel speculative decoding framework tailored for VLMs.



Efficient Al: Full-stack Workflow

AAL

Efficient Algorithm

[ Graph optimization ]

DNN Compiler

[ Kernel-level optimization ]

Full-stack Workflow

DNN Hardware Accelerator
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Graph Level Optimization

CAMEL Training

y

Concatenate| |

F2

F1

X1 X2

Output

Reversible
Block

Zhang, Sai Qian, et al. "Camel: Co-designing ai models and edrams for efficient on-device learning." 2024 IEEE International
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(b) Dependency graph  (c) Pseudo instruction
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Save y2|

(d) Computation pattern of forward pass

Compute Y1, = X1,1+F2(y2,)
Overwrite X1,1 with Y1,

Layer| Layer 1+1
a A
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Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2024.
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System Level Optimization

Round 1 Round 2
Step 1 Step 4
-~ ~
Y Compute Y Compute
‘4’ Core Step 3 L ‘4’ Core Step 6 Mem
Step 2 Step 5
'\\_M____Cf'_(i,(__T___,]/: 2 Round 1 Round 2
[Reshape] [Reshape] [Reshape] Step 1
i) ) £ ~
(linear ] [linear ] [ linear ) ‘:‘ Compute Mem (" Compute Mem
: ! Step 2 Selic St: 3 Core Step 4
Layernorm P P _—
X
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System Level Optimization

e How to convert a number x to INT representation?

Set the clipping range: (-L, L), bitwidth: b

Compute the scale: s = 2L /(2" — 2)

Clip the input x: z. = Clip(x, L, —L)

Calculate the INT representation: ;,; = round(x./s)
Rescale: Ty = STt

O O O O O

_|FP2l | INT | INT2] | Batch | log | |FP2] | INT |

INT Conv FP Norm INT Conv

\ )
Y

Laver | FP2INT is not cheap! But we can
NYU SA[ LAB y explore some system-level solution
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Kernel Fusion

embedding_dim /| token f----- m 3. parallely calculate
c I normalization/activation
= > L o and max abs of each part
R > | et
Q - Norm 1+ Abs | 4. tree-based parallel
Ie] > A A\\\t\ﬁrea r in--bTo_cI: ~  reduction for threads

GPU block

1. assign each token to a GPU block 2. assign a fraction of a

token to each thread

e For example, we can fuse the max searching operation to the batch
normalization operation within LLM.
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Efficient Al: Full-stack Workflow

AAB

% Efficient Algorithm

o

4

—

=

X .

) DNN Compiler

8

P

% [ Distributed system, Multicore ]

- | Single Core, SoC ] DNN Hardware Accelerator
[ Circuit-level Optimization ]

‘VV
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Hardware Support for DNN

e GPU is better than CPU in terms of throughput for both Neural Network
training and inference.
o GPU leverages the highly parallelized architecture of its computing
units to handle computational intensive operations.

FP64

e However, GPU: -
o General purpose, although much more specific than CPU.
o  Still not fast and power-efficient enough.

o Does not support advanced efficient DNN algorithm.

NYU SAI LAB

FP64

Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT
INT INT

e Y TENSOR TENSOR

INT INT CORE CORE

INT INT
INT INT

INT INT

LY LD/ W/ LY LDF LD LDF LDV
ST ST ST ST ST ST ST ST SFU



NVIDIA
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Chip size 814 mm?
On-chip memory ~50MB
Total memory ~96GB HBM
Cores 16,896 FP32 + 528
Tensor
Precision FP16/FP8/INTS
NVIDIA H100 bg/l ndwidth peta%St%i/sec

https://www.techpowerup.com/gpu-specs/h100-sxm5-96-gb.c3974
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NVIDIA

Chip size -

On-chip memory -

Total memory 192GB HBM
Cores -
Precision FP16/FP8/FP4/INT8
Memory bandwidth 8 Terabytes/sec

NVIDIA Blackwell

https://wccftech.com/nvidia-blackwell-gpu-architecture-official-208-billion-transistors-5

NYU SAI LAB x-ai-performance-192-gb-hbm3e-memory/



Hardware Support for DNN

e ASIC-based implementations have been recently explored to accelerate the DNN inference.
o  Google’s TPU, Apple’s Neural Engine, Cerebras Al chip, ...

e FPGA-based accelerators for DNN inference have been recently developed.

o Has good programmability and flexibility
o  Short development cycles
o  Can be used as a benchmark before implementing on ASIC

Tensor Processing Unit (Google) Alveo Accelerator Card (Xilinx) Cerebras CS-3
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Systolic Array

e Kung and Leiserson, "Systolic Arrays for VLSI," 1978 and Kung, "Why systolic architectures?' 1982

e 2D grid of multiplier-accumulators (MACs) for matrix multiplication
e Used by Google TPU for deep learning (2017), etc

Systolic cell

t

2D Systolic Array

Y [z=wx+y

V=X
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Bit-serial Low-precision Multiplier
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Figure 7: Bit-serial multiplier-accumulator (MAC). S){f}ggc i
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Why We Need Codesign?

NYU SAI LAB

N

Joint Optimization

A

v?

Algorithmic Optimization

Distillation & Low rank

[ Graph optimization ]

[ Kernel-level optimization ]

[ Distributed system, Multicore ]
[ Single Core, SoC ]

[ Circuit-level Optimization ]




Why We Need Codesign?

V?Ienshe Sparse Sparse
e' t . .
Input 19 Input Weight Input Weight
‘ g | QO
Unstructured Structured
High accuracy Low accuracy
low hardware efficiency high hardware efficiency

Hardware architecture needs to be considered when designing efficient DNN.

NYU SAI LAB
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Column Combining

Weight Matrix Systolic Array

32 64
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
NYU SAI LAB implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 54

Architectural Support for Programming Languages and Operating Systems. 2019.



Column Combining

(a) Standard

(b) Systolic Array After

Systolic Array Column Combing 3

G-

7 7 3 ) Column
[ 2 Ffo[4]- Combining Y — 6 —Y

i i 1 i ——> in out
o-CrHEE -
| 1 N (T) |£;|_ﬁ"|'_;|"6"f'“-'6_ke—pt_dJe_t-o——— 1 /

i 1 i————T ______ 1. larger magnitude :___ X3

X, X, X, X, X1 Xy X3%y

e Column combining can greatly increase the utilization efficiency of the systolic array

e Recently, Nvidia A100 GPU adopts a similar idea to support the balanced structured sparsity on their GPU
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on 55
Architectural Support for Programming Languages and Operating Systems. 2019.



FPGA Accelerator
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Kung, H. T., Bradley McDanel, and Sai Qian Zhang. "Packing sparse convolutional neural networks for efficient systolic array
implementations: Column combining under joint optimization." Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Systems. 2019.
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Term Quantization

8-bit uniform quantization 4-bit uniform quantization

272625242322 2120

1 00000001
Wi 2H00001100
3 00000101
W,=137 (10001001

272625242322 2120

O000000X
O000YX00
OO0000Y0X
1000Y00%

=

W, =0
W, =0
W, =0
W, =128

e Low-precision quantization leads to significant quantization error.
e Both weights and input activation are highly biased in values.
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Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized

dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization

w 22222120 W

2 > O 010 2

5 O 10 % 4
Budget = 2

X 23 222t 20 X

9 > 100 % 8

3 0O 01 % 2

>[21 2]
H Sty iz -
>[2321]

4-bit uniform quantization

2726252%2322212°
00000001
0001100
0000101
10001001
W, =0
W, =
W, =0
W, =128

TQ with a budget =4
272625242322212°

00000001
0001100
0000101
10001001
W, =0
W, =12
W, =0
W, =136

e We can control the term-level computations by setting a group term budget.

e For a group of values, we rank and remove the small terms based on this budget.
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Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Term Quantization: Accelerator Design

[ Systolic Array of tMAC )

tMAC | |tMAC | " [tMAC
tMAC | | tMAC | --- [tMAC
tMAC | [ tMAC | " | tMAC

e

Incrementer

Combine A‘_ﬂ:'
wires B

” Positive

Positive ~~~
input =7

Negative ]

Term
accumulator

[~ output

| ~— Negative

input

We propose the term MAC (tMAC) for the efficient implementation of TQ.
A tMAC processes all term-pair multiplications across a group of weight and data values.
Each term is represented by their corresponding exponent (2-3 bits).

1
LI
Yin Term
accumulator
Sgn[FTFx T T~ T 1+
O|11|1(2]2]3
Weight exponent queue
[e]3[1]1]0[3]2]0~Z Jr Jr Jr
Weight index queue
il 21 1414 |1
10 190 [0
Data exponent queues tMAC
[ J
o
[ J
o

The term accumulation can be implemented using half adders.
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T
Shift bitwidth

output

Kung, H. T, Bradley McDanel, and Sai Qian Zhang. "Term revealing: Furthering quantization at run time on quantized
dnns." arXiv preprint arXiv:2007.06389 (2020).
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Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

Refresh frequency decreases with

Importance KV Importance KV layer depth and bit position
scores cache scores cache :
z 0 2EEg o
I Ki | vi [H o) frequent
E:) ka | v2 |} 2 . refresh
ks lV5 I .5 I
X4 € Less
:CL_’. frequent
< refresh
KV bit position

e We propose using embedded DRAM (eDRAM) as the primary storage for LLM serving in edge device,
which offers higher storage density compared to SRAM.

e To reduce eDRAM costs and improve overall system performance, we propose Kelle, a
software-hardware co-design solution optimized for deploying LLMs on eDRAMbased edge systems.
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Kelle: Co-design KV Caching and eDRAM for
Efficient LLM Serving in Edge Computing

Lpgiﬁay |[[-KV cache eDRAM \g’eight o
Son Filol SRAM )
s [Bank] 5[ Activation =
[Systolic Evictor |4t Controller ||| eDRAM <
|[Eviction ControllerlI-IRefresh Controller| [Refresh Controller]
J:’f‘v% If\_/\f\ I T,V\
3‘ x\_—_f
OX3 | =1 0] Ox3 | =1 0] Ox3 |10
Ox2 |~ @=] Ox2 | -0 0] OX2 | =0 O =
Ox1 | =1 1=] Ox1 | =1 1~] Ox1|=11-=
w@® 1] OXO | =@ 1] OXO | =@ 1] OxO | ~0 1~
‘—T—I W —— W — ‘—f_‘_ W —
4 bits 128 bits 128 bits 128 bits 128 bits
Attn score  Key MSB Value MSB Key LSB Value LSB
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Combined with our fine-grained
memory eviction, recomputation, and
refresh control algorithms, the Kelle
accelerator delivers a 3.9% speedup
and 4.5x energy savings compared to
existing baseline solutions.
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Lecture Plan (Tentative)

Chapter 1: Basics and Efficient DNN Architectures

e Lecture 1: Review the basics of DNN
e Lecture 2: CNNs, RNNs and Variants
e Lecture 3: Transformer and its Application in AIGC

NYU SAI LAB
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Lecture Plan (Tentative)

Chapter 2: Efficient DNN Algorithms

Lecture 4: DNN Pruning

Lecture 5: DNN Quantization

Lecture 6: Distillation, Low rank Decomposition and NAS

Lecture 7: Algorithm for Large Model Efficiency

Lecture 8: Efficient DNN Training, Distributed Training, Federated Learning

NYU SAI LAB
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Lecture Plan (Tentative)

Chapter 3: System and Hardware Design for Al

Lecture 9: Distributed Machine Learning System for Training and Inference
Lecture 10: CNN Dataflow & Hardware Accelerators

Lecture 11: Transformer & LLM Accelerators

Lecture 12: Hardware Accelerator for DNN Training

Lecture 13: New Computation Paradigms / ARVR Computing

NYU SAI LAB
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Lecture 1:
Neural Network Basics

ECE-GY 9483 / CSCI-GA 3033
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Basics of Deep Neural Networks

e Multi-layer Perceptrons (MLPs)

o Fully-connected layers

o Activation functions

o Loss function

o Backpropagation

How forward and backward propagation is performed?
How to compute the gradient?

How to update the weight?

How to initialize the weight before training?

NYU SAI LAB
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Multi-layer Perceptrons

e Usually consists of fully-connected layers with nonlinear activation functions.

e

Inputs - - = A z f . -
@ Wy, A Output

Sum Activation

@ W, Function

e A neural network consists of interconnected nodes, called neurons, organized into layers.
e Each neuron receives input signals (activations), performs a computation on them, and
produces an output signal that may be passed to other neurons in the network.
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Fully-connected layers (Linear layers)

Weights/Synapses Y=XW+b

i

e X (input activations): BxC.
e Y (output activations): BxCou
Input Output e W (weights): CixCou
Neuron.s/F_eatures/ Neuron.s/F.eatures/ e b (bias): 1xCux

Activations Activations . L

e C.: Number of input activations
Co=4. Cu=3 e C.. Number of output activations
’ e B: batch size
[ i
Lmi» Linear —>|Nonlinear Linear ~Nonlinear— --- —[ Softmax Output




Computational Cost for MLP
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N
X
m

2Xx3

™
x
m

Number of multiply-accumulate operations (MACs):

©)

Xeuw}jos

Bx2x3 = 6B

Storage cost:

@)
@)

6 x 32 = 192 bits (Weights)
(2B + 3B) x 32 bits (Activation)
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1.0}

0.5}

0.0}
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. 1
Function: o(z) =
unctio (x) T

Domain: (—oo, 00)
Range: [0,1]
Differentiable everywhere
Derivative: &(x)(1-0(x))
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Tanh

—Sigmoid
~Tanh
0.5 /
s 0
-0.5¢
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e — 1

Function: tanh(z) =
anh(x) % 1

Domain: (—o0, 00)
Range: [-1,1]
Differentiable everywhere
Derivative: 1 — tanh?(z)
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RelLU

. RelU f 0
z, ifz>

| R(z) =maz(0, 2 ReLU(z) = {0, otherwise

J e Domain: (—oo, 00)

e Range: [0,00]

4 | . H 1, T > O
e Differentiable everywhere {0, z <0

0
ok - 0 5 10

NYU SAI LAB




Leaky ReLU

f04

RelLU :
JFO=»

.
»

f»=0 y

fy)=ay

x, ifx>0
ar, otherwise

Leaky_ReLU(xz) = {

e Domain: (—o0, 00)
e Range: (—00, 00)
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Softmax

o%i e Domain: [-20 N
Sj = == Fori=1,2,---,N e Range: [0,1N
j=0 € e Itis a multivariate function
I tf,_______________________j _______ E tput
Lu;» Linear —>|Nonllnear — Linear -Nonlinear— --- —[ Softmax Outpu

Input
Indino

v Block 1 —>[ Block 2 ]:{ Block 3 ]—{ Block 4 ]—*
I
—

16x16 16x16 % 16x16 %X 16x10

i i

1x16
1x10
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L.oss Functions

the ground truth output in the training dataset.

— V)2 L =
MSE =~} (¥i - ¥))

Input

-
—>
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1 n 1 m

i=1 =1

L2 loss

)

) )

Loss functions quantify the difference between the DNN output and

(yi -log(9i) + (1 — i) - log(1 — 7))

Cross-entropy loss

) (

Block 1 :[ Block 2

~———

.| Block 4

J \ J

| Block 3

J

—— Forward propagation -——— Backward propagation

~

‘| Softmax

e

D
Indino
yini iunmg
(0TXT)
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Softmax

Z.
g ) .
Si = = Fori=1,2---,N e Domain: (—o0, 00)
> ._Blezf e Range: [0,1]
J_ o o
o X ——— % O
3 ~ |Softmax | _ &
£ 2 | 8 S-
X ks
d When s has a d S1 — Sf —S1°S52 —S1°S3
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Backpropagation for Nonlinear Layers

_______________________________

1x16

—— Forward propagation
—— Backward propagation

!
1x16| |1x16
prd
(@)

S
=
D
Q
-5
1x16l

e Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.
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Backpropagation for Nonlinear Layers

e?® —1
e Tanh: tanh(z) = oz ] 1 tanh’(z)
_ [z, ifx>0 dReLU(x) _J1, ifx>0
* RelU: Relliz) = {O, otherwise dz B {0, otherwise

e Leaky RelU: Leaky ReLU(x) = {"f" ifz >0  dLeaky RelU(z) _ { 1, ifz>0

axr, otherwise dx

a, otherwise

1 d

e Sigmoid: o(z) = 11z 0 (@) =—0(z)=0()(1-0(z)
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Backpropagation for Nonlinear Layers

_______________________________

[
Linear —>|Nonllnear © S
X X
T - = L = —— Forward propagation
- __,| Linear | — Backward propagation
T -7 Co) o
< 16x10
—| Block 4 — S X

e Due to the elementwise nature, usually the nonlinear layer does not change the input and
output shape during both forward and backward passes.
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Fully-connected layers (Linear layers)

_______________________________

1x16 1x10

dL  dL dYT dL

dX ~ dY dX  dY

_______________________________ 5 dL  dL
db ~ dY

—>® Block 4 ? dL - dL
% 16x10 % = =
ke ke dW dY
16x10 16x1 1x10

S e

5 =

: Linear [~

3 S

NYU SAI LAB P 16x10 P

10x16

W' Derivative wrt data

Derivative wrt bias

Derivative wrt weight
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Fully-connected layers (Linear layers)

Y=XW+Db

Linear

1x16l [1x16
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16x10

X (input activations): BxCin

Y (output activations): BxCout
W (weights): CinxCout
b (biaS): 1% Cout

1x10

1x101

1x16

1x10 10x16

T
daL _ dL d¥ — el W' Derivative wrt data
dX dY dX dY

dL  dL L .
=y Derivative wrt bias
dL dL

Fiid =4 v Derivative wrt weight
16x10 16x1 1x10
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Weight Decay and Dropout

e The loss function is usually attached with a weight
decay loss to penalize the complexity of the function
and prevent the overfitting.

L =L+ \|W|J?

e Dropout refers to the practice of disregarding certain
nodes in a layer at random during training.

‘V, \
0%:,',

A( MA
‘\i 2 7)

e All the nodes will be there during inference.

e Can be used to prevent overfitting and reduce the
dependency on any one of a single node.

U 8 I L B Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting." The journal of machine
NY A A learning research 15.1 (2014): 1929-1958.




Layer Dropout

e LayerDrop, a form of structured dropout, which has a regularization effect during training and
allows for efficient skipping at inference time.

e |tis possible to select sub-networks of any depth from one large network without having to
finetune them and with limited impact on performance.

e Usually used in transformer.

— Pruned to 9 =
&= Train 9 Layer Model f—]
= Pruned to 6 —
&= Train 6 Layer Model = =
—_— Pruned to 3 p——
— o ¢&e—7r—m— =
[ e—
&= Train 3 Layer Model
Teain'S On Demand Train One
r:nt epz]a(rate Depth Selection  Full Network
etworks
TRAIN + TEST TIME Decreasing Model Size TEST TIME TRAIN TIME

NYU 8 I L B Fan, Angela, Edouard Grave, and Armand Joulin. "Reducing transformer depth on demand with structured dropout."
A A arXiv preprint arXiv:1909.11556 (2019).




DNN Training Process

e An optimizer is a crucial element that adjusts DNN parameters during training. Its primary

role is to minimize the training loss defined by the loss function.
o  Epoch: The number of times the algorithm runs on the whole training dataset.
o Batch: The size of block of dataset that is used to update the model weights.
o lteration: total_training_data_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be

updated.
Training
loss Initialized W for each layer.
For each epoch:
Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)
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Batch, Iteration and Epoch

e A data batch refers to a subset of the entire training dataset used to train the
network.

e lteration refers to a single update of the model's parameters.

e An epoch represents one complete pass through the entire training dataset. Here's

what typically happens during an epoch:
o For example, if you have 1,000 training examples and you use a batch size of 100, it would
take 10 iterations to complete one epoch.

e The composition of minibatches typically changes after every epoch during the
training of a DNN.

NYU SAI LAB
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DNN Training Process

e An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
o  Epoch: The number of times the algorithm runs on the whole training dataset.
o  Batch: The size of block of dataset that is used to update the model weights dataset.
o lteration: total_trainingdata_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be
updated.

Initialized W for each layer.

For each epoch:

Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)
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Stochastic Gradient Descent (with Momentum)

e W =W-ndL/dW
e Due to the significant noise introduced during the SGD process, it is beneficial to
stabilize the process.

o W=W-ng, g,—sg, ,+(1-s)dL/dW, s is a hyperparameter between 0 and 1, close to 1.

SGD without momentum SGD with momentum

NYU SAI LAB .




RMSProp

E[g°]: = 0.9E[g*];—1 + 0.1g7
n
VE|g?]: + €

9t+1 = 0; — gt

g =[0.02, -0.04, 1.@\,-0.01]

All operations are elementwise
operations.

When the variance of gradients is
high, we scale down the gradient as
we want to be more conservative and
vice versa.

1.6 will be scaled down with RMSProp

NYU SAI LAB| http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf 88




Adam Optimizer

Require: o: Stepsize

Require: (31,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6

Require: 6: Initial parameter vector

mg < 0 (Initialize 1*' moment vector) ° Combine RMSProp with Momentum
vo < 0 (Initialize 2™ moment vector) SGD
t < 0O (Initialize timestep) : _ ) _
while 6, not converged do e By adapting the learning rate during
t t%‘ lf (1) G " s o _ 5 training, Adam converges much more
gt < Vo fi(6:—1) (Get gradients w.r.t. stochastic objective at timestep ¢ .
my < B1-my—1 + (1 — By) - g, (Update biased first moment estimate) quickly than SGD.

vy < P -vy_1 + (1 — Bz) - g2 (Update biased second raw moment estimate)
iy < my /(1 — B7) (Compute bias-corrected (irst moment estimate)
U < v /(1 — 35) (Compute bias-corrected second raw moment estimate)
6, < 6,_, — a-m,/(v/, + €) (Update parameters)
end while
return 6, (Resulting parameters)

NYU SAI LAB Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). 89




DNN Training Process

e An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
o  Epoch: The number of times the algorithm runs on the whole training dataset.
o  Batch: The size of block of dataset that is used to update the model weights dataset.
o lteration: total_trainingdata_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be
updated.

Initialized W for each layer.

For each epoch:

Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)
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Learning Rate Scheduler

e Learning rate n is an important hyperparameter for training the DNNs.

e Alarge learning rate can help the algorithm to converge quickly. But it can also
cause the algorithm to bounce around the minimum without reaching it or even
jumping over it if it is too large.

e If the learning rate is too small, the optimizer may take too long to converge or get
stuck in a plateau if it is too small.

W' =W-ng,

NYU SAI LAB ”




Multistage Learning Rate

Step decay of learning rate

107! 1

e The learning rate is reduced by a fixed
s amount after every T epochs.

Typically, the learning rate is reduced to
10% of its value after every T epochs.

e Widely used in image classification task.

Learning rate
[ J

107 1

0 P 50 75 100 125 150 175 200
Epoch

NYU SAI LAB




Cosine Learning Rate

epoch_Ir

NYU SAI LAB

oy
i — nmin 5

1

2

(

7
Imaz —

e \We propose to periodically
simulate warm restarts of SGD,
where in each restart the learning
rate is initialized to some value and
is scheduled to decrease.

e Periodic restart can effectively
avoid local minima and saddle
points during the training.

' T(‘ur
7’:717;71)(1 T COS( T ﬂ-)):

(3

Loshchilov, llya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint

arXiv:1608.03983 (2016).
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Cosine Learning Rate

Learning rate schedule

0

e Tcur accounts for how

10 .

10

107

107

Learning rate

10"

()

S

AN

™

20

NYU SAI LAB

40

i — n:nzn + _(n:nax - n:nzn)(l + COS( T

100 120 140
Epochs

1
2

160 180

200

many iterations have

—e— Default, Ir=0.1 .
—E— Default, I=0.05 been performed since
—O—To= 50 T =1 the last restart.

T =100, T =1
_P_ 0_ mult- PY
—&—T1,=200,T =1
+T£)=1’Tmult=2

- = ()
_A_To-10,Tmu"—2

Tcur is updated at
each iteration t.
The SGD is restarted

once Ti epochs are
performed, where i is
the index of the run.

e Ti may increase with i.

TCUT
7)),

2

Loshchilov, llya, and Frank Hutter. "Sgdr: Stochastic gradient descent with warm restarts.” arXiv preprint arXiv:1608.03983 94

(2016).



Cyclical Learning Rate

Maximum bound
(max_Ir)

e Increasing the learning rate might have a short
term negative effect and yet achieve a longer term
beneficial effect.

Minimum bound
(base_Ir)

stepsize

NYU SAI LAB Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of

computer vision (WACV). IEEE, 2017. »




Cyclical Learning Rate

CIFAR-10

e ponp = |

e The red curve shows the result of training
with cyclical learning rate achieves the
- shortest convergence time.

0.4 ---Original learning rate| 7
0.3 ---Exponential |

' —CLR (our approach)
0 1 2 3 -+ 5 6 7
Iteration 216"
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Smith, Leslie N. "Cyclical learning rates for training neural networks." 2017 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2017.
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DNN Training Process

e An optimizer is a crucial element that fine-tunes DNN parameters during training. Its primary

role is to minimize the model’s error or loss function, enhancing performance.
o  Epoch: The number of times the algorithm runs on the whole training dataset.
o  Batch: The size of block of dataset that is used to update the model weights dataset.
o lteration: total_trainingdata_size/Batch
o Learning rate: It is a parameter that provides the model a scale of how much model weights should be
updated.

Initialized W for each layer.

For each epoch:

Initial Shuffle the training data.

For each batch in training datasize:
Perform the forward propagation
Compute the loss and weight gradient via backward propagation.
Update the weights

Update the learning rate (if necessary)
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DNN Initialization: Kaiming Initialization

e Kaiming initialization is designed for modern DNN that uses ReLU.

2
W N (o, ﬁ) ’
e Target: ensure the activation variance is the same Linear
across different layers.
e Assumption: Xl

o RelLU activation.
o Weight is normally distributed with mean of zero.
o Weight and activations are independent.

U L He, Kaiming, et al. "Delving deep into rectifiers: Surpassing human-level performance on imagenet classification."
N Y SAI AB Proceedings of the IEEE international conference on computer vision. 2015.
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Derivation

y: = Wix; + by

Assume W has a shape of mi by ni, and xi has a size of ni x1, then yi has a size of mi
X1 . ny

For each element yiiof y, its variance var(y;;) = var( E Wi xi) = nvar(Wy; iz ;)
j=1
Assume each pair of Wiijand x; are independent random variable, then we have:

var(Wi, o) = EW) a1 ;) — B* (Wi jai;) = E(WS; ) E(z;) — B> (Wi ;) E* (1)

Assume Wi,jfollows a normal distribution with mean of 0, that is E(W..i;) = 0, then:
var(Wy jx1;) = var(Wi ;) E(xf)

var(yi;) = nar(Wii ;) = mvar(Wi ;) E(x7)

NYU SAI LAB
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Derivation

Let see how E(xuz) is related to the variance of y.1, where xl,j=ReLU(y|-1,j)

E(a:lzy) = E(ReLUz(yl_l,j))

Then we have: E(ReLU(y;-1;)?)

= E(ReLU(y1-1,)*|yi-1; > 0)P(yi_1,; > 0) + E(ReLU (yi-1,5)*|y1-1,; < 0)P(y1-1,; < 0)
= E(ReLU(y1-1,)*yi-1; > 0)P(yi-1,; > 0) = 0.5E(y;, ;) = 0.5var(yi1,;)

Therefore, we have: E(z; ) = 0.5var(yi-1,;)
Given this, we have:

var(y;) = nlvar(Wl,i,j)E(wij) = 0.5nwar(Wy; j)var(yi-1,5)

100
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Derivation

var(y;) HO dnsvar(W; ;))var(yi,;)

In order to ensure the variance of y does not change, we have to make sure:

2
var(Ws;) = n,  Weid ~N (0,,/%)

101
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